Mathematical Modelling of Chemotherapy Scheduling

Metronomics @ Mumbai
May 6th, 2016

Sébastien Benzekry
INRIA team MONC
Bordeaux
Where does the MTD paradigm come from?

- **Skipper-Schabel-Wilcox** seminal papers in the 1960’s
- Basic principle = proliferation
- **Exponential** growth of the tumor cell population $N(t)$

\[\frac{dN}{dt} = aN \quad a \sim T^{-1} \quad T = \text{doubling time} \]
Where does the MTD paradigm come from?

Log-kill hypothesis

a given dose kills a **given fraction** of the tumor cell population

\[
\frac{dN}{dt} = aN - e^{C(t)}N
\]

- Established on leukemic cell lines
- Focus: **curability**

“(…) it appears that high-level, short-term schedules offer considerably greater potential for obtaining “cures”. This preference does not necessarily hold with regard to achieving **maximum increase in life span** of animals which die in spite of therapy”

Skipper, Schabel and Wilcox, Cancer Chemother Rep, 1964
The Norton-Simon hypothesis: tumor growth model

- Relative growth rate is not constant in time, it *decelerates*
- Challenges the exponential model ⇒ Gompertz growth

\[
\frac{dN}{dt} = a e^{-bt} N
\]
The Norton-Simon hypothesis

Second hypothesis: effect of the therapy is proportional to the proliferative fraction only

\[
\frac{dN}{dt} = a e^{-bt} N - eC(t)e^{-bt} N
\]

• Suggested densification of adjuvant chemotherapy protocols in breast cancer
• Subsequently validated in phase III study

\[\text{Citron et al., J Clin Oncol, 2003}\]

still focuses on tumor eradication

\[\text{Norton, Simon, Cancer Treat Rep, 1976}\]
Tumor heterogeneity and re-sensitization

Minimizing Long-Term Tumor Burden: The Logic for Metronomic Chemotherapeutic Dosing and its Antiangiogenic Basis

Philip Hahnfeldt, †Judah Folkman§¶ and Lynn Hlatky†‡

J Theor Biol, 2003
Tumor heterogeneity and re-sensitization

- In the context of tumor heterogeneity, **long-term minimization** may often be the more practical objective
- **Metronomic scheduling** is the best way to achieve it
- Lends theoretical support to the **anti-angiogenic basis** of metronomic therapy as endothelial cells because of higher ability to desensitize
A dedicated model for metronomic chemotherapy

Hypotheses:

1. Chemo has an **anti-angiogenic** effect by killing proliferative endothelial cells.
2. Cancerous cells develop **resistances** to the CT whereas endothelial cells don’t.
3. At low dose, the killing action of the drug is stronger on the endothelial compartment than on the tumor one

\[
\begin{align*}
\frac{dN}{dt} &= aN \ln \left(\frac{K}{N} \right) - \alpha_1 e^{-R \int_0^t C(s) ds} C(t)N \\
\frac{dK}{dt} &= bN - dN^{2/3} K - \alpha_2 C(t)K
\end{align*}
\]

- AA effect
- Resistance
- CT effect

\[N = \text{tumor cells} \]
\[K = \text{carrying capacity} \]
\[= \text{vascular support} \]

+ PK/PD model for exposure of the drug given the concentrations
A dedicated model for metronomic chemotherapy

MTD schedule: 100 mg at day 0 of 21-days cycle

Metronomic schedule: 10 mg/day every day without resting period

Docetaxel PK/PD parameters

Tumor cells

- Untreated
- MTD
- Metronomic

Carrying capacity (vasculature)

- Untreated
- MTD
- Metronomic

Benzekry, Barbolosi, Andre et al., MMNP, 2012
Modeling of toxicity and scheduling of vinorelbine in NSCLC

Barbolosi, André et al., Cancer Chemother Pharmacol (2014)
Elharrar, Barbolosi, André et al. (2016)

⇒ ongoing phase I trial
Adaptive therapy

- **Evolutionary** viewpoint of resistance to therapy. Darwinian selection
- **Complex** dynamics are hard to control. Why, then, use fixed, rigid protocols of drugs, dose and timing?
- Gatenby suggests to rather adapt the protocol as the tumor evolves in response to therapy

A change of strategy in the war on cancer

Patients and politicians anxiously await and increasingly demand a ‘cure’ for cancer. But trying to control the disease may prove a better plan than striving to cure it, says Robert A. Gatenby.

Gatenby, Nature, 2009

Gatenby et al., Cancer Res, 2009
Primary tumor VS metastases

Injection → Primary tumor (PT) → Time

PT growth law: $g_p(V_p)$

Dissemination law: $d(V_p)$

Metastases

Mets growth law: $g(v)$

Benzekry, M2AN, 2012
Benzekry, Ebos et al., Cancer Res, 2015

Primary tumor

- No treatment
- Endostatin
- Angiostatin
- TNP-470

Metastases

- No treatment
- Endostatin
- Angiostatin
- TNP-470
CT/AA combination. What sequence?

Bevacizumab D0 Etoposide D8 \textit{versus} Etoposide D0 Bevacizumab D8

⇒ The best sequence is different for the PT and the mets
Conclusions

- Although mathematics are a discipline far from medicine, theoretical models have often driven the paradigms underlying chemotherapy schedules.

- Rational design of chemotherapy protocols…

- ...and sequences in combination therapies (CT/AA, radio-immuno therapy)

\[\text{Benzekry, Pasquier, Andre et al., Semin Cancer Biol, 2015}\]
Thank you for your attention!