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Médecin, physicien et mathématicien suisse, Daniel Bernoulli (1700-1782), de la 
famille des grands mathématiciens Jean et Jacques Bernoulli, publie en 1738 son 
œuvre de référence « Hydrodynamica ». Il y expose le théorème fondamental de la 
mécanique des fluides qui porte son nom : « le théorème de Bernoulli ». Suivent des 
contributions importantes en analyse mathématique avec les équations différentielles 
et en probabilités, lui permettant d’étudier ainsi leurs conséquences sur les sciences 
sociales. Il est l’auteur de la première utilisation d’un modèle mathématique en 
médecine ; le problème qu’il cherchait à résoudre était celui de l’inoculation de la 
variole comme mesure de protection de la population. 
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Autour du texte 
  
Bernoulli, Daniel 
« Essai d’une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l’inoculation 
pour la prévenir » Mémoires de mathématiques et de physique, Académie royale des sciences, 1760, p.1- 45 
Disponible sur Gallica : http://gallica.bnf.fr/ark:/12148/bpt6k3558n/f220.image.r=daniel%20bernoulli 
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Bernoulli, Daniel 
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• First use of a mathematical model in medicine in 1760 by D. Bernoulli 
• Smallpox: about 10% of death at that time (300–500 million deaths in 

the 20th century)

Is smallpox inoculation at small dose (vaccination) 
worthwhile given the risk of complications?

• Smallpox has been eradicated since 1980, in part thanks to a 
worldwide vaccination campaign
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⇒ Life expectancy of 29 years (inoculation) VS 26 years (no inoculation)



Cancer: a major public health concern

• Second leading cause of death worldwide (1 in 6 deaths, 8.8 million deaths in 2015) 

• First cause of death in France (> 1 in 4 deaths) InVS and INCa, 2011 

• Cumulative risks of developing a cancer: 30.9% in males and 23.3% in females  

• Cumulative risks of death by cancer: 14.3% and 9% 

• Most prevalent cancer types: breast in women, prostate in men 

• Largest number of deaths: lung cancer 

• One third of deaths from cancer are due to 5 leading behavioral and dietary risks: tobacco 

use (22%), high body mass index, low fruit and vegetable intake, lack of physical activity and 

alcohol use



Epidemiologial trends

In contrast to the rapid declines in CRC incidence overall,
which are driven by trends in older age groups, rates in indi-
viduals aged younger than 55 years increased by almost 2%
per year from the mid-1990s to 2014.40

Liver cancer incidence continues to increase rapidly in
women, but appears to be plateauing in men since 2010
(Table 5). However, trends vary by age; from 2010 to
2014, rates increased annually by 1% to 2% in men and
women aged younger than 40 years, decreased or were
stable in men and women aged 40 to 59 years, and
increased annually by 8% in individuals aged 60 to 69

years and by 3% in those aged 70 years and older.40 There
is potential to avert much of the future burden of liver
cancer associated with hepatitis C virus (HCV) infection
through increased HCV detection coupled with new,
well-tolerated antiviral therapies that lower the risk of
hepatocellular carcinoma.41,42 Most HCV-infected indi-
viduals are undiagnosed, and 80% are baby boomers
(those born between 1945 and 1965), for whom one-time
screening has been recommended since 2012.43,44 Several
states have even mandated that health care providers offer
HCV testing to appropriate patients.45 However, of the

FIGURE 7. Trends in Cancer Death Rates by Sex Overall and for Selected Cancers, United States, 1930 to 2015.
Rates are age adjusted to the 2000 US standard population. Due to improvements in International Classification of Diseases (ICD) coding over time, numerator
data for cancers of the lung and bronchus, colon and rectum, liver, and uterus differ from the contemporary time period. For example, rates for lung and bron-
chus include pleura, trachea, mediastinum, and other respiratory organs.

Cancer Statistics, 2018

18 CA: A Cancer Journal for Clinicians
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Can mathematical models be of help in oncology? 

• Novel measurement methods (especially from molecular biology and imaging) lead to 

accumulation of large amounts of biological and clinical data

Biological challenges

• Understand tumor growth 

• General theories of systemic 
dynamics of cancer (metastasis, 
tumor-tumor interactions, cancer-
immune dynamics,…)

Clinical challenges

• Predict tumor growth 

• Predict metastasis 

• Predict resistance 

• Optimize and 
individualize the therapy

⇒ Computational biology ⇒ Personalized medicine



Mathematical models

Biological/Clinical 
problem

?

?

Existing knowledge 
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+
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(experiments, clinical)



Mathematical oncology?

Nat Rev Clin 

Cell, 2014

Nat Rev Cancer, 2015

Cell, 2008

Nature, 2003

Mathematical oncology?

Mathematics 
Physics

Oncology
Bioinformatics 
Biostatistics

12 Centers received ∼10 M$ grants to investigate questions 
in cancer research from a physical and mathematical 
sciences, including: the Dana-Farber Cancer Institute (F. 
Michor), H. Lee Moffitt Cancer Center (R. Gatenby, A.R.A 
Anderson), Harvard Univ., MIT, John Hopkins Univ., 
Methodist Research Institute,…



Outline

1. Tumor growth 

2. Therapeutics 

3. Metastases



1 Tumor growth
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What is a cancer?

number and thus maintenance of normal tissue architecture and
function. Cancer cells, by deregulating these signals, become
masters of their own destinies. The enabling signals are
conveyed in large part by growth factors that bind cell-surface
receptors, typically containing intracellular tyrosine kinase
domains. The latter proceed to emit signals via branched intra-
cellular signaling pathways that regulate progression through
the cell cycle as well as cell growth (that is, increases in cell
size); often these signals influence yet other cell-biological prop-
erties, such as cell survival and energy metabolism.
Remarkably, the precise identities and sources of the prolifer-

ative signals operating within normal tissues were poorly under-
stood a decade ago and in general remain so. Moreover, we still
know relatively little about the mechanisms controlling the
release of these mitogenic signals. In part, the understanding
of these mechanisms is complicated by the fact that the growth
factor signals controlling cell number and position within tissues
are thought to be transmitted in a temporally and spatially regu-
lated fashion from one cell to its neighbors; such paracrine
signaling is difficult to access experimentally. In addition, the
bioavailability of growth factors is regulated by sequestration in
the pericellular space and extracellular matrix, and by the actions
of a complex network of proteases, sulfatases, and possibly
other enzymes that liberate and activate them, apparently in
a highly specific and localized fashion.
The mitogenic signaling in cancer cells is, in contrast, better

understood (Lemmon and Schlessinger, 2010; Witsch et al.,
2010; Hynes and MacDonald, 2009; Perona, 2006). Cancer cells
can acquire the capability to sustain proliferative signaling in
a number of alternative ways: They may produce growth factor
ligands themselves, to which they can respond via the expres-
sion of cognate receptors, resulting in autocrine proliferative
stimulation. Alternatively, cancer cells may send signals to stim-
ulate normal cells within the supporting tumor-associated
stroma, which reciprocate by supplying the cancer cells with
various growth factors (Cheng et al., 2008; Bhowmick et al.,
2004). Receptor signaling can also be deregulated by elevating
the levels of receptor proteins displayed at the cancer cell

Figure 1. The Hallmarks of Cancer
This illustration encompasses the six hallmark
capabilities originally proposed in our 2000 per-
spective. The past decade has witnessed
remarkable progress toward understanding the
mechanistic underpinnings of each hallmark.

surface, rendering such cells hyperre-
sponsive to otherwise-limiting amounts
of growth factor ligand; the same
outcome can result from structural alter-
ations in the receptor molecules that
facilitate ligand-independent firing.
Growth factor independence may also

derive from the constitutive activation of
components of signaling pathways oper-
ating downstream of these receptors,
obviating the need to stimulate these
pathways by ligand-mediated receptor

activation. Given that a number of distinct downstream signaling
pathways radiate from a ligand-stimulated receptor, the activa-
tion of one or another of these downstream pathways, for
example, the one responding to the Ras signal transducer,
may only recapitulate a subset of the regulatory instructions
transmitted by an activated receptor.
Somatic Mutations Activate Additional Downstream
Pathways
High-throughput DNA sequencing analyses of cancer cell
genomes have revealed somatic mutations in certain human
tumors that predict constitutive activation of signaling circuits
usually triggered by activated growth factor receptors. Thus,
we now know that !40% of human melanomas contain
activating mutations affecting the structure of the B-Raf protein,
resulting in constitutive signaling through the Raf to mitogen-
activated protein (MAP)-kinase pathway (Davies and Samuels
2010). Similarly, mutations in the catalytic subunit of phosphoi-
nositide 3-kinase (PI3-kinase) isoforms are being detected in
an array of tumor types, which serve to hyperactivate the PI3-
kinase signaling circuitry, including its key Akt/PKB signal
transducer (Jiang and Liu, 2009; Yuan and Cantley, 2008). The
advantages to tumor cells of activating upstream (receptor)
versus downstream (transducer) signaling remain obscure, as
does the functional impact of crosstalk between the multiple
pathways radiating from growth factor receptors.
Disruptions of Negative-Feedback Mechanisms that
Attenuate Proliferative Signaling
Recent results have highlighted the importance of negative-
feedback loops that normally operate to dampen various types
of signaling and thereby ensure homeostatic regulation of the
flux of signals coursing through the intracellular circuitry (Wertz
and Dixit, 2010; Cabrita and Christofori, 2008; Amit et al.,
2007; Mosesson et al., 2008). Defects in these feedback mech-
anisms are capable of enhancing proliferative signaling. The
prototype of this type of regulation involves the Ras oncoprotein:
the oncogenic effects of Ras do not result from a hyperactivation
of its signaling powers; instead, the oncogenic mutations
affecting ras genes compromise Ras GTPase activity, which

Cell 144, March 4, 2011 ª2011 Elsevier Inc. 647

• Tumor = malignant neoplasm. neo = new, plasma = formation 
• Usually assumed that it departs from a cell undergoing several genetic and epigenetic 

changes leading to abnormal proliferation

Hallmarks of cancer

Yet other distinct attributes of cancer cells have been
proposed to be functionally important for the development of
cancer andmight therefore be added to the list of core hallmarks
(Negrini et al., 2010; Luo et al., 2009; Colotta et al., 2009). Two
such attributes are particularly compelling. The first involves
major reprogramming of cellular energy metabolism in order to
support continuous cell growth and proliferation, replacing the
metabolic program that operates in most normal tissues and
fuels the physiological operations of the associated cells. The
second involves active evasion by cancer cells from attack and
elimination by immune cells; this capability highlights the dichot-
omous roles of an immune system that both antagonizes and
enhances tumor development and progression. Both of these
capabilities may well prove to facilitate the development and
progression of many forms of human cancer and therefore can
be considered to be emerging hallmarks of cancer. These
enabling characteristics and emerging hallmarks, depicted in
Figure 3, are discussed individually below.

An Enabling Characteristic: Genome Instability
and Mutation
Acquisition of themultiple hallmarks enumerated above depends
in large part on a succession of alterations in the genomes of
neoplastic cells. Simply depicted, certain mutant genotypes
confer selective advantage on subclones of cells, enabling their
outgrowth and eventual dominance in a local tissue environment.
Accordingly, multistep tumor progression can be portrayed as
a succession of clonal expansions, each of which is triggered
by the chance acquisition of an enabling mutant genotype.
Because heritable phenotypes, e.g., inactivation of tumor
suppressor genes, can also be acquired through epigenetic
mechanisms such asDNAmethylation and histonemodifications
(Berdasco and Esteller, 2010; Esteller, 2007; Jones and Baylin,
2007), some clonal expansions may well be triggered by nonmu-
tational changes affecting the regulation of gene expression.

The extraordinary ability of genome maintenance systems to
detect and resolve defects in the DNA ensures that rates of
spontaneous mutation are usually very low during each cell
generation. In the course of acquiring the roster of mutant genes
needed to orchestrate tumorigenesis, cancer cells often
increase the rates of mutation (Negrini et al., 2010; Salk et al.,
2010). This mutability is achieved through increased sensitivity
to mutagenic agents, through a breakdown in one or several
components of the genomic maintenance machinery, or both.
In addition, the accumulation of mutations can be accelerated
by compromising the surveillance systems that normally monitor
genomic integrity and force genetically damaged cells into either
senescence or apoptosis (Jackson and Bartek, 2009; Kastan,
2008; Sigal and Rotter, 2000). The role of TP53 is central here,
leading to its being called the ‘‘guardian of the genome’’ (Lane,
1992).
A diverse array of defects affecting various components of the

DNA-maintenance machinery—often referred to as the ‘‘care-
takers’’ of the genome (Kinzler and Vogelstein, 1997)—have
been documented. The catalog of defects in these caretaker
genes includes those whose products are involved in (1) detect-
ing DNA damage and activating the repair machinery, (2) directly
repairing damaged DNA, and (3) inactivating or intercepting
mutagenic molecules before they have damaged the DNA
(Negrini et al., 2010; Ciccia and Elledge, 2010; Jackson and
Bartek, 2009; Kastan, 2008; Harper and Elledge, 2007; Friedberg
et al., 2006). From a genetic perspective, these caretaker genes
behavemuch like tumor suppressor genes, in that their functions
can be lost during the course of tumor progression, with such
losses being achieved either through inactivating mutations or
via epigenetic repression. Mutant copies of many of these care-
taker genes have been introduced into the mouse germline and
result, predictably, in increased cancer incidence, supporting
their potential involvement in human cancer development
(Barnes and Lindahl, 2004).

Figure 3. Emerging Hallmarks and Enabling
Characteristics
An increasing body of research suggests that two
additional hallmarks of cancer are involved in the
pathogenesis of some and perhaps all cancers.
One involves the capability to modify, or repro-
gram, cellular metabolism in order to most effec-
tively support neoplastic proliferation. The second
allows cancer cells to evade immunological
destruction, in particular by T and B lymphocytes,
macrophages, and natural killer cells. Because
neither capability is yet generalized and fully vali-
dated, they are labeled as emerging hallmarks.
Additionally, two consequential characteristics of
neoplasia facilitate acquisition of both core and
emerging hallmarks. Genomic instability and thus
mutability endow cancer cells with genetic alter-
ations that drive tumor progression. Inflammation
by innate immune cells designed to fight infections
and heal wounds can instead result in their inad-
vertent support of multiple hallmark capabilities,
thereby manifesting the now widely appreciated
tumor-promoting consequences of inflammatory
responses.

658 Cell 144, March 4, 2011 ª2011 Elsevier Inc.

Hanahan and Weinberg, Cell, 2000 Hanahan and Weinberg, Cell, 2011



Microenvironment

have been portrayed as reasonably homogeneous cell popula-
tions until relatively late in the course of tumor progression,
when hyperproliferation combined with increased genetic
instability spawn distinct clonal subpopulations. Reflecting
such clonal heterogeneity, many human tumors are histopatho-
logically diverse, containing regions demarcated by various
degrees of differentiation, proliferation, vascularity, inflamma-
tion, and/or invasiveness. In recent years, however, evidence
has accumulated pointing to the existence of a new dimension
of intratumor heterogeneity and a hitherto-unappreciated
subclass of neoplastic cells within tumors, termed cancer stem
cells (CSCs).

Although the evidence is still fragmentary, CSCs may prove to
be a common constituent of many if not most tumors, albeit
being present with widely varying abundance. CSCs are defined
operationally through their ability to efficiently seed new tumors
upon inoculation into recipient host mice (Cho and Clarke, 2008;
Lobo et al., 2007). This functional definition is often comple-
mented by including the expression in CSCs of markers that
are also expressed by the normal stem cells in the tissue-of-
origin (Al-Hajj et al., 2003).

CSCs were initially implicated in the pathogenesis of hemato-
poietic malignancies (Reya et al., 2001; Bonnet and Dick, 1997)
and then years later were identified in solid tumors, in particular
breast carcinomas and neuroectodermal tumors (Gilbertson and
Rich, 2007; Al-Hajj et al., 2003). Fractionation of cancer cells on
the basis of displayed cell-surface markers has yielded subpop-
ulations of neoplastic cells with a greatly enhanced ability, rela-
tive to the corresponding majority populations, to seed new
tumors upon implantation in immunodeficient mice. These

Figure 4. The Cells of the Tumor Microenviron-
ment
(Upper) An assemblage of distinct cell types constitutes
most solid tumors. Both the parenchyma and stroma of
tumors contain distinct cell types and subtypes that
collectively enable tumor growth and progression.
Notably, the immune inflammatory cells present in tumors
can include both tumor-promoting as well as tumor-killing
subclasses.
(Lower) The distinctive microenvironments of tumors. The
multiple stromal cell types create a succession of tumor
microenvironments that change as tumors invade normal
tissue and thereafter seed and colonize distant tissues.
The abundance, histologic organization, and phenotypic
characteristics of the stromal cell types, as well as of the
extracellular matrix (hatched background), evolve during
progression, thereby enabling primary, invasive, and then
metastatic growth. The surrounding normal cells of the
primary and metastatic sites, shown only schematically,
likely also affect the character of the various neoplastic
microenvironments. (Not shown are the premalignant
stages in tumorigenesis, which also have distinctive
microenvironments that are created by the abundance
and characteristics of the assembled cells.)

often-rare tumor-initiating cells proved to share
transcriptional profiles with certain normal
tissue stem cell populations, motivating their
designation as stem-like.
The origins of CSCs within a solid tumor have

not been clarified and indeedmaywell vary from
one tumor type to another. In some tumors, normal tissue stem
cells may serve as the cells-of-origin that undergo oncogenic
transformation to yield CSCs; in others, partially differentiated
transit-amplifying cells, also termed progenitor cells, may suffer
the initial oncogenic transformation thereafter assuming more
stem-like character. Once primary tumors have formed, the
CSCs, like their normal counterparts, may self-renew as well
as spawn more differentiated derivatives; in the case of
neoplastic CSCs, these descendant cells form the great bulk of
many tumors. It remains to be established whether multiple
distinct classes of increasingly neoplastic stem cells form during
inception and subsequent multistep progression of tumors, ulti-
mately yielding the CSCs that have been described in fully devel-
oped cancers.
Recent research has interrelated the acquisition of CSC traits

with the EMT transdifferentiation program discussed above
(Singh and Settleman, 2010; Mani et al., 2008; Morel et al.,
2008). Induction of this program in certain model systems can
induce many of the defining features of stem cells, including
self-renewal ability and the antigenic phenotypes associated
with both normal and cancer stem cells. This concordance
suggests that the EMT program not onlymay enable cancer cells
to physically disseminate from primary tumors but also can
confer on such cells the self-renewal capability that is crucial
to their subsequent clonal expansion at sites of dissemination
(Brabletz et al., 2005). If generalized, this connection raises an
important corollary hypothesis: the heterotypic signals that
trigger an EMT, such as those released by an activated, inflam-
matory stroma, may also be important in creating and maintain-
ing CSCs.

662 Cell 144, March 4, 2011 ª2011 Elsevier Inc.

Hanahan and Weinberg, Cell, 2011



A kidney tumor observed by Hematoxylin and Eosin staining

We will focus here on carcinomas: solid cancers from epithelial origin



Quantification of Tumor Growth

• Imaging techniques (gives human data) 
• Mammographies 
• Computed tomography (CT) 
• Magnetic resonance imaging (MRI) 
• Functional imaging (PET)

FIG. 2. Clinical history of a patient with a hepatocellular carcinoma as a primary tumor and multiple metastatic
tumors in the liver. Although the patient was "rst treated with mild transcatheter arterial embolization (TAE), the metastasis
could not be controlled. The progression of metastasis was surveyed by three successive CT imagings until the chemotherapy
was started. By our simulation, the estimated times of inception of the primary tumor and the largest metastatic tumor were
668 days and 200 days prior to the "rst diagnosis of the primary tumor, respectively. Abbreviations: prim."primary tumor;
meta."metastases; chemo."chemotherapy.

FIG. 3. Contrast-enhanced X-ray computed tomographies (CT) of the liver with multiple metastatic tumors. The left and
right panels were CT images scanned on 432 days and 559 days after the "rst diagnosis of the primary tumor, respectively.
Several metastatic tumors are seen as low attenuated areas (arrowheads indicate typical ones). The number of tumors and the
size of each tumor observed within the right tomography increased compared to those within the left tomography. In this
work, the sizes of all tumors detectable within the whole liver by using all the CT slices were measured.

were retrospectively surveyed. The clinical his-
tory is shown in Fig. 2. The sizes of the tumors
were measured by using X-ray CT images (Fig. 3)
or subtracted angiographies. In order to study
the behavior of natural metastasis with minimal
arti"cial modi"cations, we reviewed three se-
quential CT images at di!erent times before
starting the patient's chemotherapy. The num-
bers of metastatic tumors detected were 10, 28
and 48 on 432 days, 559 days and 632 days after
the "rst diagnosis as a primary tumor, respective-
ly. Each tumor colony was observed to grow at
rates consistent with eqn (2). Figure 4(a) shows
the cumulative number of metastases plotted

against the tumor colony size for successive dates
of observation. The theoretical cumulative distri-
butions are generated by integrating eqn (5) from
x to in"nity (i.e. N(x, t)"!!

!
"(x, t) dx). The values

of the four unknown parameters in our model
and the time of the primary tumor inception were
determined, by "tting the theoretical curve
to the observed cumulative size distribution
through the least-squares regression. The results
were: a"0.00286 day"#, b"7.3!10#$ cells,
#"0.663, m"5.3!10"% (cell day)"# and the
time of the primary inception was 668 days prior
to the "rst diagnosis. As seen in Fig. 4(a), the
whole series of clinical data "t well with the

180 K. IWATA E¹ A¸.

• In vitro 
• 2D proliferation assays 
• 3D Tumor spheroids. Limited maximal size (mm)

• In vivo animal models 
• Subcutaneous/orthotopic implant 
• Iso/xenograft (requires immune-deficient mice) 
• Genetically engineered mice 



Background on quantitative analysis of tumor growth curves

• One general observation is that the relative growth rate decreases in time Laird, Br J 
Cancer, 1965, Steel, Br J Cancer,1966, Spratt, Cancer, 1993

• The most widely used model is the Gompertz model, but there is a wide array of empiric, 
ODE-based, growth models

• For experimental tumor growth, first appears in Casey, Am J Cancer, 1934

• Applicability for tumor growth generally confirmed on large animal data sets Laird, Br J 
Cancer, 1964,1965 and human breast cancer data Norton, Cancer Res, 1988

• Study of biological growth processes has a long history 
• Started in the 1950’s for human tumor growth dynamics Collins et al., Am J Roentgenol 

Radium Ther Nucl Med, 1956



Fit methodology: likelihood maximization
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1 Tumor growth modeling

2 2. Tumor growth laws

Problem:

Considering n volume observations (V1, · · · , V

n

) at time points (t1, · · · , t

n

), we would like to
see whether these data could have been generated by a given function

V :
R ⇥ Rp �! R

(t, q) 7�! V(t, q)

depending on time t and a vector of parameters q 2 Rp.
Another – closely related – problem is to find a set of parameters q̂ that would "best" describe

the data.
In our context a model will be the combination of two parts: 1. The structural model V (deter-

ministic) 2. An observation model linking the model to the observations (error model, stochastic)
The latter is defined by assuming that the observations were generated by the model plus some

measurements error and we write
V

j

= V(t
j

; q) + s
j

#
j

.

where s
j

#
j

describes the error term. It is natural to assume that this error term is gaussian, with ex-
pectation zero. s

j

is the standard deviation of the error and the #
j

are independent and identically
distributed random variables with

#
j

⇠ N (0, 1).

Error model

An important assumption of the model is how does s
j

depend on the volume. The first step
would be to consider s

j

as constant (i.e. independent of j), which would mean that for all the obser-
vations, the magnitude of the error is the same. However, it appears also reasonable to consider
that from our measurement technique (calipers), larger tumors would result in larger errors. A
natural assumption could then be a proportional error model described by s

j

= sV(t
j

, q). In our
case, a detailed study of 133 measurements that were performed twice on the same tumor estab-
lished a slightly more refined model but we will assume a proportional error model for simplicity.

Likelihood maximization

A central concept in model fitting and parameter estimation is the notion of likelihood and
likelihood maximization. The likelihood of the data is defined as the probability density function
of the data, under the assumption it has been generated by the model V with parameters q and s.
Note that s is often unknown and is a parameter to be established. However in our analysis we
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vations, the magnitude of the error is the same. However, it appears also reasonable to consider
that from our measurement technique (calipers), larger tumors would result in larger errors. A
natural assumption could then be a proportional error model described by s

j

= sV(t
j

, q). In our
case, a detailed study of 133 measurements that were performed twice on the same tumor estab-
lished a slightly more refined model but we will assume a proportional error model for simplicity.

Likelihood maximization

A central concept in model fitting and parameter estimation is the notion of likelihood and
likelihood maximization. The likelihood of the data is defined as the probability density function
of the data, under the assumption it has been generated by the model V with parameters q and s.
Note that s is often unknown and is a parameter to be established. However in our analysis we
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Problem:

Considering n volume observations (V1, · · · , V

n

) at time points (t1, · · · , t

n

), we would like to
see whether these data could have been generated by a given function

V :
R ⇥ Rp �! R

(t, q) 7�! V(t, q)

depending on time t and a vector of parameters q 2 Rp.
Another – closely related – problem is to find a set of parameters q̂ that would "best" describe

the data.
In our context a model will be the combination of two parts: 1. The structural model V (deter-

ministic) 2. An observation model linking the model to the observations (error model, stochastic)
The latter is defined by assuming that the observations were generated by the model plus some

measurements error and we write
V

j

= V(t
j

; q) + s
j

#
j
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is the standard deviation of the error and the #
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depend on the volume. The first step
would be to consider s
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as constant (i.e. independent of j), which would mean that for all the obser-
vations, the magnitude of the error is the same. However, it appears also reasonable to consider
that from our measurement technique (calipers), larger tumors would result in larger errors. A
natural assumption could then be a proportional error model described by s

j

= sV(t
j

, q). In our
case, a detailed study of 133 measurements that were performed twice on the same tumor estab-
lished a slightly more refined model but we will assume a proportional error model for simplicity.

Likelihood maximization

A central concept in model fitting and parameter estimation is the notion of likelihood and
likelihood maximization. The likelihood of the data is defined as the probability density function
of the data, under the assumption it has been generated by the model V with parameters q and s.
Note that s is often unknown and is a parameter to be established. However in our analysis we
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(Statistical) observation model

σj  = std of the 
measurement error

constant

proportionalcould compute it from the analysis mentioned above and we will take here s = 0.1 (10% error).
From the formula above, under the independence and normality assumption we can compute it
to get

L(q) = p(V1, · · · , V

n

; q) =
n

’
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p(V
j

; q) =
n

’
j=1

1
s

j

p
2p

e

� (
V

j

�V(t
j

,q))
2

2s2
j

At this point, it is natural to consider the log-likelihood l(q, s) = ln (L(q)) to simplify the calcula-
tions. We get

l(q) = �
n

Â
j=1

�
V

j

� V(t
j

, q)
�2

2s2
j

�
n

Â
j=1

ln(s
j

)� n ln(
p

2p) (1)

l(q) = �
n

Â
j=1

�
V

j

� V(t
j

, q)
�2

2s2
V(t

j

, q)2 � n ln(s)�
n

Â
j=1

ln(V(t
j

, q))� n ln(
p

2p) (2)

To simplify further, we will replace V(t
j

, q) by the observation V

j

in the terms above coming
from the error model (third term and denominator in the first sum). The maximization of the log-
likelihood then becomes equivalent to the following weighted least squares minimization problem
(the ss can be removed because they don’t change the minimization problem):

q̂ = argmin
q

����

����
V � V(t; q)

V

����

����
2

2
.

where V = (V1, · · · , V

n

), V(t; q) = (V(t1; q), · · · , V(t
n

; q)) and || · ||2 is the discrete L

2 norm (sum
of squares).

Import modules and load the data

In [1]: % matplotlib inline
%precision %.3g

Out[1]: '%.3g'

In [2]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

In [3]: df = pd.read_excel('data_table.xlsx')
time = df.index.values

2.1 2.1 Proliferation and the exponential model

We will first explore the validity of the exponential growth model to test what was observed by
plotting the curves. The model is defined by a constant length of the cell cycle (thus a constant
doubling time) for a constant fraction of the tumor volume. In equations, this translates into
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Since the viable tumor mass, mv, is the product of the total
number of viable cells and the average mass of a cell, mc, we have
mv~Nvmc leading to

BT~(
Bc

mc
)mvz(

Ec

mc
)
dmv

dt
ð5Þ

This first-order differential equation, representing conservation of
energy, explicitly links properties of tumor cells (Bc, Ec, and mc)
with properties of the whole tumor (BT and mv). Consequently, it
provides a simple, but powerful, way to integrate important
features and results from different areas of cancer research.
Solving this equation to determine tumor growth requires
knowledge of how tumor metabolic rate, BT , depends on its
viable mass, mv, to which we now turn.

Model for tumor vascular system and the prediction of
metabolic rate. Tumor metabolic rate, BT , is proportional to
the sum of the rates of cellular fermentation and aerobic
respiration. For avascular tumors, BT depends on the diffusion
rate of nutrients and oxygen from the surrounding environment
[18]. For vascular tumors, BT is proportional to the total blood
volume flow rate to the tumor, _QQT , consistent with observations
that glucose and oxygen consumption rates vary linearly with
blood flow rate [19]. The dependence of _QQT on mv and host mass,
M, is determined by the structure, dynamics and interaction of the
tumor and host vasculatures. Here, we develop a complete
analytical model of tumor vascular networks applicable
throughout different phases of development by deriving the
allometric scaling of tumor rates and times with host body size
and capillary density. Although the importance of the vascular
interface between the tumor and the host has been previously
recognized, our work is a novel attempt to mechanistically model
its role in tumor growth [10–12,20].

Mounting evidence suggests that some tumor vascular networks
exhibit fractal-like properties similar to those of the circulatory
system [21–23]. To analyze tumor vasculature, we borrow from an
idealized framework that has proven successful for quantitatively
understanding the circulatory system. This framework assumes
that in healthy tissue the vasculature is space-filling, minimizes
energy loss and has invariant terminal units (capillaries) [1]. We
compare these optimal networks with measures of tumor
vasculature, while retaining the assumption of invariant capillaries.

To facilitate comparisons between healthy and tumor vascula-
ture, we introduce scaling ratios for radii and lengths of vessels
across levels, k, of the network. We treat all branches at the same
level, k, as having similar properties and assume a constant
branching ratio, n–the effective number of daughter vessels for
each mother vessel [1]. Following West et al 1997 and Gevertz et
al 2006, we model blood vessels as cylinders, similar to the Krogh
model [1,11]. The capillaries define the lowest level k~N while
the largest vessels feeding the tumor define k~0 (Fig. 1). We
introduce scale factors for the ratio of daughter to mother vessel
radii:

rkz1

rk
~n{a ð6Þ

and similarly for daughter to mother vessel lengths:

lkz1

lk
~n{b ð7Þ

The exponents, a and b, can be used as quantitative diagnostics for
comparison with healthy tissue, where theory predicts and data

support a~1=2 for large vessels and a~1=3 for small vessels (from
energy minimization) and b~1=3 for all vessels (from space filling)
[1]. Deviations from these values indicate the degree to which
optimization and space-filling are violated during tumor growth.

For healthy tissue, a and b are approximately independent of k,
indicating that the network has a fractal-like structure, as observed.
To determine if tumor vascular networks have similar geometric
structure, we observe that for vessel radii, rk

r0
~n{ka, where r0 is

the largest vessel in the hierarchy, and taking the log of both sides
and rearranging yields log rk~({a log n)kzlog r0, and similarly
for vessel lengths log lk~({b log n)kzlog l0, so plotting log rk

and log lk versus k should yield straight lines whose slopes are
{a log n and {b log n, respectively, if a and b are constant.
Figs. 2a, 2b show data from various tumors, indicating that tumor
vasculature does indeed exhibit approximately fractal behavior, in
agreement with other studies [22,24].

The metabolic rate of the tumor, determined by oxygen and
nutrient availability, depends on its capillary density, which is
controlled by the scaling factors a and b. In File S1 we derive the
relationship between the metabolic rate, tumor size and vascular
architecture:

BT~B0(M)mb
v ð8Þ

where b~1 if 2azbƒ1, but ~1=(2azb) otherwise, and B0(M)
is a normalization factor that depends on the host mass, M. For
healthy tissue, where capillary density is controlled by large-vessel

scaling, this gives b~3=4, in agreement with data (B!M3=4) for
large mammals [25]. For tumors too small to support significant
pulsatile flow, or whose host supply vessels are likewise too small,
theory predicts a&1=3. So, if their vasculature is space-filling,
b~1 and their metabolic rate scales linearly: BT~B0(M)mv [1].

As tumor vasculature becomes increasingly inefficient and/or
attaches to host supply vessels sufficiently large to deliver pulsatile

Figure 1. Schematic of tumor growth model. (a) Vascularized
tumor supplied by blood siphoned from host vasculature. White area
represents viable tissue, while grey represents necrotic core. (b)
Schematic of vascular network composed of tubes. (c) Topological
model of tumor and host network beginning with feeding vessel (k = 0)
and terminating at the capillary level (k = N).
doi:10.1371/journal.pone.0022973.g001
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Goodness of fit metrics

Goodness of fit

Model SSE AIC RMSE R2 p > 0.05 #

Power law 0.164(0.0158 - 0.646)[1] -18.4(-43.2 - 1.63)[1] 0.415(0.145 - 0.899)[1] 0.97(0.801 - 0.998)[1] 100 2

Gompertz 0.176(0.019 - 0.613)[2] -16.9(-48.2 - 1.1)[2] 0.433(0.156 - 0.875)[2] 0.971(0.828 - 0.997)[2] 100 2

Logistic 0.404(0.0869 - 0.85)[3] -5.41(-18.4 - 3.88)[3] 0.665(0.331 - 1)[3] 0.908(0.712 - 0.989)[3] 100 2

Exponential 1.9(0.31 - 3.56)[4] 10.7(-5.38 - 23.1)[4] 1.4(0.595 - 1.95)[4] 0.69(0.454 - 0.944)[4] 15 1
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Parameter values and identifiability

NSE = Normalized Standard Error practical identifiability

Parameters

Model Par. Unit Median value (CV) NSE (%) (CV)

Power law

– mm

3(1≠“)· day

≠1
0.886 (30.8) 8.17 (52.5)

“ - 0.788 (7.56) 2.28 (58.6)

Gompertz

–0 day

≠1
1.68 (23.5) 6.11 (82.9)

— day

≠1
0.0703 (28) 8.35 (92.9)

Logistic

a day

≠1
0.474 (13.3) 2.93 (23.3)

K mm

3
1.92e+03 (36.7) 15.8 (28.7)

Exponential a day

≠1
0.356 (12.9) 2.53 (19.4)

Identifiability of all the models (lung data)Table 3: Parameter values estimated from the fits. Lung data

Model Par. Unit Median value (CV) Mean

normalized std

error (CV)

Power law

a
î
mm3(1≠“) · day≠1

ó
0.921 (38.9) 11.9 (48.7)

“ - 0.788 (9.41) 4 (53.4)

Gompertz

a
⇥
day≠1⇤

0.742 (25.3) 6.02 (51.3)

—
⇥
day≠1⇤

0.0792 (42.4) 13.7 (65.4)

Exponential-linear

a0
⇥
day≠1⇤

0.49 (19.3) 3.08 (41.5)

a1
⇥
mm3 · day≠1⇤

115.6 (22.6) 15.7 (40.7)

Dynamic CC

a
⇥
day≠1⇤

0.399 (106) 447 (89.8)

b
⇥
mm≠2 · day≠1⇤

2.66 (241) 395 (176)

K0
⇥
mm3⇤

2.6 (322) 6.5e+04 (345)

Von Bertalan�y

a
î
mm3(1≠“) · day≠1

ó
7.72 (112) 1.43e+04 (155)

“ - 0.947 (13.5) 40.9 (73)

b
⇥
day≠1⇤

6.75 (118) 2.98e+07 (222)

Generalized logistic

a
⇥
day≠1⇤

2555 (148) 2.36e+05 (137)

K
⇥
mm3⇤

4378 (307) 165 (220)

– - 0.0001413 (199) 2.36e+05 (137)

Exponential V0
V0

⇥
mm3⇤

13.2 (47.9) 28.9 (55)

a
⇥
day≠1⇤

0.257 (15.4) 7.49 (48.3)

Logistic

a
⇥
day≠1⇤

0.502 (17.5) 3.03 (48.9)

K
⇥
mm3⇤

1297 (23.1) 17.2 (43.8)

Exponential 1 a
⇥
day≠1⇤

0.399 (13.8) 2.87 (24.5)

Shown are the median values within the population and in parenthesis the coe�cient

of variation (CV, expressed in percent and defined as the standard deviation within

the population divided by mean and multiplied by 100) that quantifies inter-animal

variability. Last column represents the normalized standard errors (nse) of the maximum

likelihood estimator, defined in (11).

The improvement of this model as compared to the logistic model is notable. However, the cost
for this has been to add a parameter to the model. How do we know that we are not overfitting
now? In other words, isn’t it too easy to fit the growth curves with three parameters. This is
linked to the question of identifiability of the parameters. The theory of maximimum likelihood
estimation (MLE) offers great tools for such a purpose. Specifically, from its definition the MLE
estimator is a random variable. As such, it has a distribution coming from the fact that the data
itself is uncertain. For a single parameter, the standard deviation of this distribution is called the
standard error. An important property of the MLE estimator q̂ is that it is asymptotically normally
distributed and its asymptotic covariance matrix C can be estimated from the combination of : 1)
the (estimated) variance of the measurement error ŝ2 and 2) the jacobian matrix of the model
evaluated in q̂. Specifically, denoting J the (weighted) jacobian matrix of the model, one can show
that asymptotically

q̂ ⇠ N
✓

q⇤, ŝ2
⇣

J · J

T

⌘�1
◆

where q⇤ is the true value assumed to have generated the data (which we are estimating with q̂).
I invite you to think two minutes about why the presence of ŝ as a proportional term and J as
an inversely proportional term make sense. From C the standard error (se) and relative standard
error (rse) on parameter p are defined by

se

�
q̂p

�
=

q
C

p,p rse

�
q̂p

�
=

se

�
q̂p

�

q̂p

⇥ 100

Luckily, this covariance matrix is automatically calculated by curve_fit and given as a second
output. Define a new function fit_all_mice_analysis which does not plot the fits but instead
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Angiogenesis

J. Folkman, Tumor angiogenesis: therapeutic implications, N Engl J Med, 1971



A model integrating angiogenesis
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Hahnfeldt et al. (Folkman), Cancer Res, 1999

• Dynamic carrying capacity 

• Biophysical derivation of the balance between pro and anti-
angiogenic factors

stimulation of angiogenesis

inhibition of angiogenesisIf we assume the tumor is in quasi-steady state, i.e., that its growth
rate is small relative to the rate of distribution of factor, then !n!t ! 0.
If we further assume radial symmetry, then n ! n(r), where r is the
distance from the center of the tumor, the problem reduces to:

n" "
2n#

r
#
cn

D2 "
s

D2 $ 0

Making the substitutions (u, z) for (r, n), where u ! rc 1/2/D and
z ! r 1/2 (n $ s/c), the result is a modified Bessel equation in z(u)
of order 1⁄2. The two fundamental solutions of this equation are:

z1 $
sinh%u&

!u and z2 $
e$u

!u
from which it can be shown, with the further definition u0 ! r0c1/2/D,
that the concentration n inside and outside the tumor is:

ninside%r& $
s0
c "1 # %1 " u0&e$u0

sinh%u&

u # and

noutside%r& $
s0
c

%u0cosh%u0& # sinh%u0&&
e$u

u

The two extremes of the clearance time c are now of interest. For
small c (inhibitor case), i.e., for c '' D2/r02, we obtain:

ninside%r, small c& $
s0
6D2 %3r02 # r2& and

noutside%r, small c& $
s0r03

3D2r

whereas for large c (stimulator case), we obtain:

ninside%r, large c& $
s0
c
and noutside (r, large c) $ 0

It is clear, therefore, that inhibitor will impact on the target endothelial
cells in the tumor in a way that grows ultimately as r02 or (Volume)2/3,
whereas the impact of stimulator will be relatively independent of
tumor/vascular size. It follows that, as r0 increases, the effect of the

inhibitor on tumor endothelial cells will overtake that of the stimula-
tor, leading to a “plateau” in tumor size.
The model implication of this finding is that the inhibitor term of

the expression for K# in Eqs. C1 and C2 will tend to grow at a rate
K%V& faster than the stimulator term, where %(& ) 2/3, because both
K and V have “volume” dimensions. If we now argue that the inhibitor
term reflects tumor cells producing inhibitor that impacts on the
vasculature K, then the final inhibitor term would become dKV2/3,
where, again, the V2/3 factor reflects the r02 dependence of the mean
inhibitor source strength. A form for the stimulator, then, is immedi-
ately suggested to be bKV2/3/(K%V&) or bK'V(, where ' ( ( ) 1. We
chose bV to represent this term, although bK would be another
arguable choice (the difference should not be dramatic because V and
K tend to move together). The final form for the expression for K# in
Eqs. C1 and C2) is:

K# $ # )2K " bV # dKV2/3 # eKg%t& (C4)

Eqs, C1, C2, C3, and C4 comprise the complete model formulation for
tumor growth control under the actions of angiogenic stimulation and
inhibition.
Antiangiogenic Treatment: Data and Analysis. The control and

treatment data for three different inhibitors, demonstrating the effects
of systemic administration of antiangiogenic agents on tumor growth
through modulation of stimulator/inhibitor balance, are shown in Figs.
1 and 2. The accompanying curves show the corresponding tumor
response as derived from the model. The inhibitors mouse endostatin
(6, 7), mouse angiostatin (8, 9), and TNP-470 (10, 11) were tested
against Lewis lung tumors grown in C57BL/6 mice. Treatment was
initiated on day 0 (5 days after implantation) when tumors were*200
mm3 in size. Treatment regimens were 20 mg/kg/day and 4 mg/kg/day
for endostatin, 20 mg/kg/day for angiostatin, and 30 mg/kg/q.o.d.3 for
TNP-470. Tumors were measured on day 0, day 4, and every third day
thereafter. It is seen that treatment regimens of 20 mg/kg/day of either
angiostatin or endostatin, or 20 mg/kg/day each of angiostatin and
endostatin in combination, control Lewis lung tumor growth. The rate
of regression for Lewis lung tumors treated with 20 mg/kg/day of
endostatin is in agreement with the published results of Boehm et al.
(6), where full regressions were observed after this treatment. By

3 The abbreviation used is: q.o.d., every second day.

Fig. 1. Lewis lung carcinoma implanted in
C57BL/6 mice. Treatment was initiated on day 0
(5 days after implantation) when tumors were
*200 mm3 in size. Treatment regimens were 20
mg/kg/day. Tumors were measured on days 0, 4,
and every third day thereafter. A, control data and
the fitted model curve using Eqs. C1, C2, C3, and
C4 with the parameters in Table 1. B–D, tumor
response data and fitted curves to treatments with
TNP-470 (B), angiostatin (C), and endostatin (D).
The fits to the data were performed using the one-
time fit of the model to the control and solving in
each instance for the corresponding agent parame-
ters, the vascular inhibition rate e and the clearance
rate clr. Data, horizontal segment with vertical
error bars (+1 SD); curves, model derived.
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TUMOR DEVELOPMENT UNDER ANGIOGENIC SIGNALING

• Allows integration of the action of anti-angiogenic drugs 

• Also gives a framework for understanding post-vascular dormancy



Concomitant tumor resistance

• Critical clinical implications in terms of post-surgery metastatic acceleration

• Inhibition of secondary growth by a primary mass

Primary hypothesis: athrepsia 
(deprivation of nutrients) 

 Ehrlich, 1906

Concomitant immunity 

Bashford, 1908

Non-immunogenic systemic 
factors 

 Dewys, Cancer Res 1972

CR occurs in immune-
deprived mice 

 Gorelik, Int J Cancer 1981

Cytostatic circulating factor 

 Ruggiero et al., Br J Cancer 
1985

Systemic inhibition of 
angiogenesis 

O’Reilly et al. (Folkman), Cell 
1994

…

…



Figure 1. Inhibition of the Growth of Metastases by the Presence of 
a Primary Tumor 
Thirty mice were implanted with LLCs. When tumors were 1500 mm3, 
half of the mice had their tumors removed. Within 15 days of tumor 
removal, the number of surface lung metasmses (A) and lung weight 
(B) had markedly increased as compared with the mice with an intact 
primary tumor. In mice with an intact primary tumor, lung weight (which 
correlates with tumor burden) was not significantly different from that 
of a normal lung. 

genesis inhibitor(s) in the circulation relative to angiogenic 
stimulator(s). 

We have developed an animal model in which the pres- 
ence of a primary tumor almost completely suppresses 
the growth of its metastases. We now report the isolation, 
purification, and amino acid sequence of a polypeptide 
generated by the primary tumor that inhibits angiogenesis 
and growth in a secondary metastasis. 

Tumor Present 

InhIbitIon of the Growth of Metada 
by the Preaonce of a Pdmary Tumor 
Several murine tumors, which included sarcoma-160, 
B-l 6 melanoma, colon-66 adenocarcinoma, and various 
cell lines of Lewis lung carcinoma (LLC), were compared 
for the ability of a primary dorsal subcutaneous tumor to 
inhibit growth of its distant metastases. A variant of LLC 
(designated LLC-LM, i.e., low metastatic) most potently 
suppressed lung metastases; removal of the tumor was 
followed by the most rapid growth of me&stases. 

LLC cells implanted into the dorsal skin of C57BL6/J 
mice formed visible tumors (60-160 mm? within 3 days. 
Within 13-21 days of removal of a primary LLC of 600- 
2000 mm3, the number of visibte surface lung metastases 
had increased by lO-fold compared with control mice with 
an intact tumor (Figure 1 A). Lung weight, which correlates 
with total tumor burden, increased 400% relative to mice 
in which the primary tumor was intact (p < 0.001) (Figure 
1 B). Since comparable results were obtained in immuno- 
deficient SCID mice lacking both T and B lymphocytes 
(data not shown), the inhibition of metastatic growth was 
not dependent on an intact immune system. In mice with 
an intact primary tumor, histological studies revealed the 
presence of microscopic metastases, either as perivascu- 
lar cuffs of eight or nine cell layers around a preexisting 
venule or as a thin colony of two layers of tumor cells 

Tumor Removed 

Figure 2. The Presence of a Primary Tumor Is Associated with an Inhibition of Neovascularizatlon and Growth of Its Metastaees 
Mice were sacrificed 15 days after removal of primary tumors and their lungs compared with lungs of mice with an intact primary tumor. Hematoxylin 
and eosin staining of sections of lungs revealed the presence of m&stases in both groups. Mice with a primary tumor present (left panels) had 
only small meta&ses (arrows) as compared wtth the growing and Invasive metaetaees in the lungs of mice after primary tumor removal (right panels). 
lmmunohistochemicaf staining with antibodies (Ab) against von Wilbbrand factor revested neovasculariurtion (brown statn) of the me@etaeH after 
primary tumor removal. In contrast, when the tumor was left In place, there was only pertvascular cufffng of metastasas wtthout neovascutarkatttn. 
Normal lung vessels were seen in both groups. 

O’Reilly, Folkman et al., Angiostatin: A Novel Angiogenesis Inhibitor That Mediates te Suppression of Metastases by a Lewis Lung Carcinoma, Cell 1994



Questions and experiment

Questions 
• Quantitatively distinguish between qualitatively valid theories of tumor-

tumor interactions 
• Establish and validate a minimal model able to simulate tumor-tumor 

interactions 

Experiment 

• Injection s.c. of two tumors of 106 LLC cells in C57/BL6 mice 

• Two groups 

– Control: only one tumor 

– Group S: simultaneous injection of cells in two different sites



A mouse with two tumors



Something happens. One tumor has normal volume and the other is smaller

Control group (single tumors) Double tumors
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Small/Large in two-tumor 
bearing animals VS artificially 

paired small/large controls

One tumor has normal growth and the other is suppressed

Benzekry et al., Cancer Res, 2017

Days
0 5 10 15 20 25

Vo
lu

m
e 

(m
m

3 )

0

500

1000

1500

Days
0 5 10 15 20 25

Vo
lu

m
e 

(m
m

3 )

0

500

1000

1500

Days
0 5 10 15 20 25

Vo
lu

m
e 

(m
m

3 )

0

500

1000

1500

Days
0 5 10 15 20 25

Vo
lu

m
e 

(m
m

3 )

0

500

1000

1500

Individual growth kinetics



Single-tumor growth models
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Figure 2: One-tumor growth models analysis: parameter distributions
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Models for single tumor growth were independently fitted to the large and small growth curves from the two-tumor

bearing animals and from the simulated double-independent tumors from the control group. Parameters inferred were

compared.
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Figure 2: One-tumor growth models analysis: parameter distributions
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Two-tumors models

(Figure 1). Dividing the population of tumor cells between proliferative (�!(�) and 

�!(�)) and quiescent (�!(�) and �!(�)) compartments, this theory was formalized in a 

simple way by the following equations: 

 

��!
�� = ��! − (��! + �(�! + �!))1!!!!,       �! � = 0 = �!,!
��!
�� = ��! + �(�! + �!),       �! � = 0 = 0
��!
�� = ��! − (��! + �(�! + �!))1!!!!,       �! � = 0 = �!,!
��!
�� = ��! + �(�! + �!),       �! � = 0 = 0

 (1)  

In this model, � is the proliferation rate, � is the product of the production rate of 

cytostatic factors (such as meta- and ortho-tyrosines) and the transfer rate from 

proliferation to quiescence. The systemic dynamics of these seric factors was 

assumed to be at quasi-steady state and controlled by parameter � (which 

aggregates transfer from the tumor cells into the circulation, natural degradation and 

transfer back from the circulation to the distant site as well as production and effect 

rates). The Heaviside functions 1!!!! and 1!!!! (which equate one if �! > 0 and zero 

elsewhere) stand for the fact that when factors are present but no proliferative cells 

exist, nothing happens. In particular, they ensure that the solutions (understood in the 

weak sense due to the discontinuous nature of the Heaviside function) remain 

positive. 

Indirect (angiogenesis-related) inhibition of growth 

Derivation of this model was based on previous modeling considerations of tumor 

growth under angiogenic signaling (28) and distant angiogenic inhibition (38,39). In 

the model, the tumors carrying capacities, denoted �! and �! are dynamical 

variables that represent the respective tumors vasculature supports, known to be a 

Proliferation inhibition

 

{
 

 
݀�ଵ
݀� = ܽ�ଵ ln (

�
�ଵ + �ଶ

) ,       �ଵሺ� = Ͳሻ = �,ଵ
݀�ଶ
݀� = ܽ�ଶ ln (

�
�ଵ + �ଶ

) ,       �ଶሺ� = Ͳሻ = �,ଶ
 (3)  

 

Competition
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𝑑𝑉1
𝑑𝑡 = 𝑎𝑉1 ln (

𝐾1
𝑉1
) ,       𝑉1(𝑡 = 0) = 𝑉0,1

𝑑𝐾1
𝑑𝑡 = 𝑏𝑉1 − 𝑑𝑉1

2
3𝐾1 − 𝑒𝑉21𝐾1>𝐾0,       𝐾1(𝑡 = 0) = 𝐾0

𝑑𝑉2
𝑑𝑡 = 𝑎𝑉2 ln (

𝐾2
𝑉2
) ,       𝑉2(𝑡 = 0) = 𝑉0,2

𝑑𝐾2
𝑑𝑡 = 𝑏𝑉2 − 𝑑𝑉2

2
3𝐾2 − 𝑒𝑉11𝐾2>𝐾0,       𝐾2(𝑡 = 0) = 𝐾0

 

Angiogenesis inhibition

Benzekry et al., Cancer Res, 2017

• Requirements: 

• Symmetry: same parameters for tumor 1 and 
tumor 2 

• Should resume to single tumor growth in the 
absence of the other tumor 

• Main assumption for the difference between the two 

tumors: difference in the initial take (V0,1 = 1, V0,2 = 

0.75) 

• Difference in the growth kinetics should not result 
from difference in V0 

• Model selection (rejection) criteria: goodness-of-fit + 

parameter identifiability



The competition model does not fit
B. Competition
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The « inhibition of proliferation » model fitted best

Table 2

Model Par. Unit Median value (CV) RSE (%)

Proliferation inhibition

↵ day

�1
5.77 (67.4) 17.5

� day

�1
5.07 (49.3) 21.2

� - 0.074 (2.69e+03) 2.47

Angiogenesis inhibition

a day

�1
0.182 (47.8) 4.01

b day

�1
21.5 (603) 2.34

e day

�1
4.75 (106) 1.48

Competition

a day

�1
0.085 (30.9) 3.45

K mm

3
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Model SSE AIC RMSE R2 #

Proliferation inhibition 0.204(0.0319 - 0.461)[1] -14.2(-54 - -8.28)[1] 0.453(0.182 - 0.688)[1] 0.961(0.902 - 0.987)[1] 3

Angiogenesis inhibition 0.336(0.154 - 0.772)[2] -5.07(-27.5 - 5.67)[2] 0.588(0.4 - 0.891)[2] 0.957(0.645 - 0.986)[2] 3

Competition 0.666(0.141 - 2.2)[3] 0.71(-33.2 - 13.1)[3] 0.828(0.383 - 1.5)[3] 0.694(-0.0757 - 0.964)[3] 2
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Summary

• Exponential (proliferation) and logistic (competition) models cannot explain 
tumor growth 

• Gompertz (phenomenological) and power law (biologically-grounded) models fit 
very well 

• Hahnfeldt model for integration of angiogenesis 

• There are systemic interactions between tumors in the same organism 

• Competition alone cannot explain the phenomenon 

• Systemic inhibition of angiogenesis or proliferation are valid theories
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1.2. Tumor growth laws 

1.3. Angiogenesis and the Hahnfeldt model 

1.4. Tumor-tumor interactions 

1.5. Prediction 

1.6. Meningioma and heterogeneity 

1.7. Spatial models



Population approach: nonlinear mixed effects
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• Usual fitting methods consider each time series independently

• When only sparse data are available from subjects in the same population, one can fit the 

parameters of a population distribution and use all data all-in-once

• Reduces the number of parameters from pxN to p+p2
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Population approach and its use for prediction

Benzekry et al., PloS Comp Biol, 2014
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Nonlinear mixed-effects statistical modeling
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Power law model: all animals

No a priori A priori



Prediction improvement for all models

Full future curve Next data point All prediction depths 
Power law

Randomly assign (100 replicates) half of the animals to the « learning 

group » and the other half to the « predict » group



Concise history of the development of spatial models

• First spatial considerations in a quantitative 
mathematical analysis of tumor growth in Mayneord, 

Cancer Res, 1932 

⇒ derives the linear growth of rat sarcoma’s 

radius the proliferative fraction is confined to a 
small rim 

842 w. V. MAYNEORD
8r----------------r----.

3

Z 4 6 • M 4 H M M n M •
.a.4y,s

6r-------------------,

FIos. 1 ANI> 2

is in a state of active growth, but only a thin capsule (sometimes
not more than 1 rom. thick) enclosing the necrotic centre of the
tumour.
We may investigate the effect of distribution of growing

substance as below:
(a) Suppose the wholeof the tumour in a state of active division

and for simplicity suppose the tumour spherical. Then the rate of
increase in volume, [V], is evidently proportional to V, since we

American Association for Cancer Research. 
on August 29, 2014. © 1932cancerres.aacrjournals.org Downloaded from 

318 H. P. Greenspan 

Figure I. Cross-section of a nodular carcinoma showing the central necrotic core, r :0; Ri , the layer of 
viable non-proliferating ceHs, R, :0; r:O; R

" 
and the outer shell where aH mitosis occurs, R, :0; r :0; Ro. 

aggregate of about a million or so, in a growth period that can be several days, or 
several months. The spherical nodule expands from the microscopic to the size 
of a "pin head" whose radius is the order of a millimeter (1,000 Jl. in normal units). 

This range of scales makes it very desirable to formulate any theory in dimension-
less terms for then the data of different experiments can be incorporated within 
one framework simply as specific parameter settings. These dimensionless param-
eters, which are groupings of the rate constants of the various diffusive and 
metabolic processes, are for the most part readily found from observation. This 
is an important point because the rate constants themselves are either unknown 
or very difficult to determine. 

Diffusion in tissues and tissue cultures has been widely studied and the early 
paper by HilI [7] is a common antecedent to both the mathematical and biological 
literature. Analogous problems that concern diffusion and moving boundaries are 
quite common in science and engineering, especially in the subjects of filtration, 
absorption, heat conduction, ablation (melting and freezing), change of state, 
gas-liquid reactions and chemical kinetics (see [2] and [3]). 

The increased resistance of oxygenated cancer cells to x-ray therapy has been 
a major reason for the study of nodular carcinomas. Most of the existing theory 
and much experimental data have been developed in this context and the papers 
ofThomlinson and Gray [11], Burton [1], Sutherland et al. [8], [10] are especially 
noteworthy. 

A new approach to the control of cancer based on the relations hip of tumor 
growth and vascularization has been proposed and examined by J. Folkman [4], 
[5], [6]. Briefty this research shows that cancer cells produce a distinct chemical 
factor, called T AF or Tumor Angiogenesis Factor, which stimulates the rapid 
formation of new capillaries. As the tumor, in vivo, approaches its diffusion 
limited size the local T.A.F. concentration inereases and induees neighboring 
blood vessels to grow towards and into the eolony. The malignaney beeomes 
vaseularized and perfusion then supplants simple diffusion as the dominant 
mechanism for the supply of nutrients and the removal of wastes. Onee the tumor 
conneets with the circulatory system all constraints imposed on it by diffusion 
are eliminated and subsequent growth is almost explosive. Folkman's primary 
objeetive is to prevent this metastasis by blocking the chemical message for 
vaseularization that is sent from the tumor to the surrounding tissue. If this can 
be aecomplished, it may be possible to maintain a tumor indefinitely in its dormant, 
prevaseularized state. Moreover, a blood test for T.A.F. would provide a very 
early indication of cancer, long before it can be discovered by present techniques. 
As a result of this work, the future treatment of many types of cancer may focus 

• Following J. Folkman’s realization that avascular tumor growth is 
limited to a small size (mm) by the diffusion of nutrients, one of 
the first partial differential equation model of tumor growth 
was proposed by Greenspan, Stud Appl Math, 1972 

⇒ tests hypotheses regarding the origin of a possible 

inhibitory factor (necrotic core or proliferative cells)



Concise history of the development of spatial models, ctd

Elite (Vector Laboratories) for 40 minutes. The stained slides were
scored by a trained clinical pathologist (D.B.) for the presence or
absence of the mutant form of IDH1. For the 5 participants whose
IDH1 mutation status was obtained from medical records, similar
antibody-based detection was performed clinically at the UW De-
partment of Anatomic Pathology. Scoring was performed by
trained clinical pathologists, as noted in the medical reports.
IDH1 mutation status for the 2 TCGA patients were retrieved
from their publicly available interpreted expression data of
mutated IDH1 genes, determined via hybrid-capture performed
on an ABI SOLiD platform.

Ki67 Immunohistochemistry

Fixed tissue was available from 58 participants. Sections were cut
from archived tumor tissue in formalin-fixed, paraffin-embedded
blocks, mounted on glass slides, and processed using automated
immunohistochemistry (Bond, Leica) that included deparaffiniz-
ing, rehydration, incubation with primary antibody MIB-1 clone
(Dako), and application of chromogen. Slides were reviewed on
a microscope (BX41, Olympus) with photomicroscopy (DMC76,
Leica) of the region with highest labeling density.

Statistics

The Student’ t test (2-tailed, unpaired) was performed to deter-
mine the statistical significance of any differences in r/D, D, r,
and velocity between the IDH1mut group and the IDHwt group
using R version 2.14.2 software (R Foundation for Statistical Com-
puting). Additionally, the crossmatch test was used to examine
the difference between 2 multivariate distributions in Figs. 3A
and 5. To assess the accuracy of the diagnostic test (IDH1mut¼

low r/D), receiver operating characteristic (ROC) curves and the
area under the ROC curve (AUC) were calculated using MATLAB.18.
The log-rank test was used to compare differences in survival rate
in the Kaplan-Meier analysis. For all comparisons between IDH1wt
and IDH1mut tumor characteristics, we considered a P value ≤.05
to be significant.

Results
Image-based Comparison of IDH1 Mutant and IDH1
Wild-type Gliomas

One hundred seventy-two participants with newly diagnosed,
contrast-enhancing gliomas were included in our study. Ninety-
two percent of these tumors (n¼ 158) were grade IV, while the
remainder (n¼ 14) were grade II or III. Fig. 1 shows 2 contrast-
enhancing tumors, one IDH1mut and the other IDH1wt, with
similar net proliferation rates (r) but different net dispersal rates
(D) and compares the T1Gd and T2 MRI scans as well as model-
predicted cell density profiles based on their patient-specific r/D.
These 2 tumors are generally representative of the average inva-
sion profiles (average r/D) for IDH1mut and IDH1wt patients.
Contrast-enhancing gliomas that are mutant in IDH1 (IDH1
mut) have lower r/D values than contrast-enhancing gliomas
that are wild-type IDH1 (IDH1wt). That is, the IDH1mut tumor
displays a relatively more diffuse growth pattern (low r/D),
which is reflected in the relatively slow gradient from the red high-
cell density regions to the blue low-cell density regions extending
well beyond the edge of the T1Gd abnormality. Thus, the simu-
lated glioma cell density tuned to each patient’s r/D value clearly
reveals the diffuse invasion profile of IDH1mut tumors; most of
the IDH1wt tumor has dense cellularity with a steep gradient

Fig. 1. MRI scans from 2 patients with similar r values, one that is mutant for IDH1 (top row: A,B,C) and one that is IDH1 wild-type (bottom row: D,E,F).
All 6 images are pretreatment scans; A and D are T1Gd images, B and E are T2 images, and C and F are false-color images representing tumor cell
density overlaid on the T1Gd scans (red, highest cell density; blue, lowest cell density). The growth parameters associated with these GBMs are r¼
21.1/year, D¼ 85.0 mm2/year, with r/D¼ 0.25/mm2 for the IDH1mut tumor and r¼ 21.0/year, D¼ 14.0 mm2/year, r/D¼ 1.5/mm2 for the IDH1wt
tumor. The figure illustrates the more diffuse nature of the IDH1 mutant tumor (top row) versus the wild-type (bottom row).

Baldock et al.: Growth kinetics predict IDH1 mutation
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• Lots of theoretical models developed in the 1980s - 1990s Adam, Byrne, Chaplain, Preziosi : 
continuum mechanics based models viewing the tumor as a mixture

• Early 2000s: reaction-diffusion equations for the growth of gliomas (brain tumors) 
Murray, Tracqui, Swanson. Assumptions: proliferation + random motility ⇒ linear growth of the 

radius. Method to evaluate the invisible infiltrative part of the tumor

Baldock et al., Neuro-Oncology, 2014

• Early 2010s: use of clinical images to parameterize advection PDE models. 
Saut, Colin

Project-Team MONC 3

Our project aims at supporting the decision process of oncologists in the definition of therapeutic protocols via
quantitative methods. The idea is to build phenomenological mathematical models based on data obtained in
the clinical imaging routine like CT scans, MRIs and PET scans. We therefore want to offer medical doctors
patient-specific tumor growth models, which are able to evaluate – on the basis of previously collected data
and within the limits of phenomenological models – the time evolution of the pathology at subsequent times
and the response to therapies. More precisely, our goal is to help clinicians answer the following questions
thanks to our numerical tools:

1. When is it necessary to start a treatment?
2. What is the best time to change a treatment?
3. When to stop a treatment?

In addition, we also intend to incorporate real-time model information for improving the accuracy and efficacy
of non invasive or micro-invasive tumor ablation techniques like acoustic hyperthermia, electroporation, radio-
frequency, cryo-ablation and of course radiotherapies.

There is therefore a critical need of integrating biological knowledge into mathematical models based on
clinical or experimental data. The main purpose of our project is to create new mathematical models and new
paradigms for data assimilation that are adapted to the biological nature of the disease and to the amount of
multi-modal data available.

2.2. General strategy

Figure 1. 3D numerical simulation of a meningioma. The tumor is shown in red.

The general strategy consists of the interactions of several stages:
• Stage 1: Derivation of mechanistic models based on the biological knowledge and the available

observations. The construction of such models relies on the up-to-date biological knowledge at
the cellular level including description of the cell-cycle, interaction with the microenvironement
(angiogenesis, interaction with the stroma). Such models also include a "macroscopic" description
of specific molecular pathways that are known to have a critical role in carcinogenesis or that



Spatial models of tumor growth and clinical images

@tP +r · (vP ) = (�p � �d)P,

@tS +r · (vS) = 0.

March 27, 2000 11:34 WSPC/103-M3AS 0049

382 E. De Angelis & L. Preziosi

the equation describing the evolution of living tumour cells. An important role is
played by the relation between nutrient supply and capillary density just outside
the tumour surface and by the diffusion of angiogenesis factors produced by the
tumour outside it.
In more detail, the paper develops as follows. Section 2 explains the biological

background obtained by phenomenological observation which is taken as the stand-
ing block of the modelling procedure. Section 3 considers the general modelling
frameworks, and more precisely lattice schemes in Sec. 3.1 and continuum mecha-
nics approach in Sec. 3.2. In Sec. 4, after introducing the specific assumptions, the
model is deduced. Section 5 deals with the formulation of the free boundary pro-
blem while Sec. 6 provides the description of some qualitative behaviours of the
model. Finally, the last section draws some conclusions and suggests some possible
developments of the model.
A description of the conceivable scenarios and their dependence on the para-

meters is given in Ref. 17. The simulations therein show the qualitative behaviors
which are described in Sec. 2 and an agreement on the qualitative characteristics
deduced in Sec. 6.

2. Phenomenological Observation of the Biological System

Three overlapping phases of growth are usually identified in the stage of growth
of tumour cells condensed into a compact form: avascular, angiogenic and vascular
phase.
In the avascular phase, tumour cells are aggregated in the form of multicell

spheroids and feed on oxygen and nutrients present in the environment. These
nutrients filtrate through the surface of the spheroid and diffuse in the intracellular
space. Consumption of nutrients and cell proliferation are characterised by strong
nonuniformities. After the early stages of growth, the spheroids give an inner zone
of dead necrotic cells for lack of nutrients and a thin outer zone of living cells.
This last zone can be further divided into a layer with prevalence of quiescent cells

(a) (b) (c)

Fig. 1. Movement of tumour cells. (a) Configuration before a mitosis, (b) mitosis and pressure
exerted on neighbouring cells, (c) cell movement and propagation of the force field generated by
mitosis.

Model. lung meta The inv. problem Results

Modeling lung metastasis: Lung metastasis and chemo-2

The result

Figure 5: Comparison between the prediction and the observation: top raw
shows the real medical image, below the simulation. The dates are on the left
2008/09/22 (calibration) and on the right 2008/12/10 (prediction).
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Thierry Colin LATIM, February 4, 2014

r · v = (�p � �d)P.P+S = 1 ⇒

v = �kr⇧.Closure hypothesis

Jouganous, Palussière, Cornelis, Saut, Colin, J Comput Surg 2015

P = proliferative cells, S = healthy tissue



2 Therapies



A brief overview of anti-cancer therapies

• First treatment when disease is localized 
and resectable ⇒ surgery

Ancient  

Egypt 

∼ 2000 BC

1900
• Radiation therapy

1950 • Cytotoxic chemotherapy

1970 • Adjuvant chemotherapy



A brief overview of anti-cancer therapies

• Anti-angiogenic therapy
2004

2010

2001 • Biotargeted therapies

• New generation immunotherapy 
(checkpoint inhibitors)



Where can mathematical models help?



Define the dose and scheduling of the drug administration

time

c

Good care

Patient dies from the disease

Severe Toxicities

Patient dies from treatment



Personalize the treatment

⇒ adaptive dosing strategies



Where does the Maximum Tolerated Dose (MTD) paradigm come from ?

• Established on leukemic cell 

lines 

• Focus: curability
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“(...) it appears that high-level, short-term 
schedules offer considerably greater potential 
for obtaining “cures”. This preference does not 
necessarily hold with regard to achieving 
maximum increase in life span of animals 
which die in spite of therapy” 

Skipper, Schabel and Wilcox, Cancer Chemother Rep, 1964
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Log-kill hypothesis  

a given dose kills a given fraction of the tumor cell population



The Norton-Simon hypothesis: tumor growth model
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• Relative growth rate is not constant in time, it decelerates 

• Challenges the exponential model ⇒ Gompertz growth



The Norton-Simon hypothesis

Norton, Simon, Cancer Treat Rep, 1976

• Suggested densification of 

adjuvant chemotherapy protocols 

in breast cancer 

• Subsequently validated in phase III 

study

Citron et al., J Clin Oncol, 2003

still focuses on tumor eradication
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Second hypothesis: effect of the therapy is proportional to the proliferative 

fraction only



Tumor heterogeneity and re-sensitization
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Minimizing Long-Term Tumor Burden: The Logic for Metronomic
Chemotherapeutic Dosing and its Antiangiogenic Basis

Philip Hahnfeldt*wz, Judah FolkmanyOz and Lynn Hlatkywz
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The general utility of the maximum tolerated dose (MTD) paradigm, a strategy aimed at
optimizing the chance of total tumor cell eradication, is here questioned. Evidence to date
suggests that for many tumors the potential for eradication is in fact remote, with patients
consistently demonstrating tumor cell presence subsequent to MTD treatments having
eradicative intent. The failure to eradicate is attributed largely to the heterogeneous nature of
the tumor. Heterogeneous cell populations demonstrate short-term refractoriness to up-front
dose delivery, but ‘‘resensitize’’ as part of dose recovery, showing increased overall
susceptibility to a given series of doses when delivered more evenly spaced. It is
demonstrated: (1) that the minimization of total tumor burden, rather than complete
eradication, may often be the more practical objective; and (2) that regularly spaced,
‘‘metronomic’’ dosing is the best way to achieve it. As a corollary, it is found that the more
efficient ability of the tumor endothelial cells to resensitize following dosing predicts a
targeting bias towards the endothelial compartment of a tumor when metronomic dosing is
employed. This lends theoretical support to recent empirical studies showing that regularly
spaced dosing schedules with no extended rest periods act more antiangiogenically, thereby
delaying or avoiding the onset of acquired resistance.

r 2003 Elsevier Science Ltd. All rights reserved.

Introduction

To date, the goal of chemotherapy has been
complete tumor kill. Dosing by ‘‘front-loading’’
has thus become the mainstay of treatment,
owing largely to theoretical and laboratory
studies over the past 40 years, which demon-

strate that the probability of tumor cell extinc-
tion is optimized by up-front administration of
the maximum tolerated dose (MTD) (Skipper
et al., 1964; Skipper, 1965). With the exception
of lymphoid, germ cell, and some pediatric
cancers, however, consistent tumor eradication
has been elusive. More commonly, in spite of
dosing to MTD, impressive initial regressions or
remissions are followed by regrowth or recur-
rence. Even when patients are considered to be
in complete remission, evidence that full eradica-
tion is not being achieved comes from PCR
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Fig. 1. Heterogeneous target population. The cell population subject to treatment is in general not uniform, consisting
instead of sensitive and resistant subpopulations. This population is represented theoretically as one having two sensitivity
compartments, one of size p(t) (subpopulation 1) whose cells have a sensitivity a, and one of size q(t) (subpopulation 2)
whose cells have a sensitivity b. Through cell cycle progression and other effects, cells naturally undergo sensitivity changes,
here reflected by ‘‘movements’’ between these compartments; g1 and g2 represent the ‘‘flow’’ rates from Compartments 1 to 2
and 2 to 1, respectively. Cells in each compartment are assumed to proliferate at rates l1 and l2.

Fig. 2. Resensitization effect. A cell population composed of two or more mutually influential or interconvertible
subpopulations will display a resensitization effect when exposed to chemotherapy. (a) A hypothetical asynchronous cell
population where yellow cells are highly sensitive and blue cells are highly resistant. These two cell states will maintain a
fixed proportion (here, 30 : 6 or 5 : 1) if left undisturbed. A bolus dose of chemotherapy kills the sensitive cells [shown as dead
gray cells in b], leaving behind the resistant ones. As time progresses without dosing, the resistant cells eventually refill the
sensitive void so as to re-establish the natural 5 : 1 proportion (c). This action has the effect of resensitizing the population as
a whole. At this point, as before dosing, the number of cells entering the sensitive state has come into balance with the
number leaving. Cell proliferation is neglected here, but under fairly broad circumstances, a tumor population will be
optimally suppressed if dosing is applied in regular intervals to allow for the general phenomenon of resensitization.

doi:10.1006/jtbi.2003.3162
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Fig. 3. Dose separation effect. The effect of spacing two equal bolus doses with ‘‘area-under-the-curve’’ strength d¼ 4 is
examined (units not important). The vertical axis refers to the instantaneous dose concentration for the indicated bolus
doses, or the population size in the case of the colored curves. The first dose is at time 1 and the second is at either 2 or 5. The
red curve represents the response to doses at 1 and 2, and the blue curve the response to doses at 1 and 5. The purple
segments indicate where the two curves overlap. In (a), the relevant parameters are l1¼ 0.5, l2¼ 0.1, g1¼ 0.3, g2¼ 0.1,
a¼ 1.0, b¼ 0.1. In (b), sensitivities are assumed to be equal: a¼ b¼ 0.3. A sensitivity difference underlies the advantage to
greater dose spacing (a); without it, there is no effect (b). The suppression factor R [eqn (5)] achieved in each case is the
limiting ratio H2/H1 of population sizes.

Fig. 4. Cyclic dose delivery. Doses are usually delivered in repeating cycles of width T. Here, N¼ 4 doses of strengths
d¼ 2 are delivered at times t1¼ 2, t2¼ 3, t3¼ 5, and t4¼T¼ 8, with the spacings repeated for each successive cycle. The
parameters used here are l1¼ 0.5, l2¼ 0.1, g1¼ 0.3, g2¼ 0.1, a¼ 1.0, b¼ 0.1. The measure of dose cycle effectiveness for
ongoing dosing differs from the finite dosing case (Fig. 3). Here, it is the limiting ratio of the population size H2 at the end of
a cycle to the population size H1 at the end of the previous cycle. This limiting ratio is the largest eigenvalue d1 of matrix Q
[eqn (6)].
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Fig. 5. Response to uneven vs. metronomic dose delivery. Shown are the responses to an irregular (d¼ 6 at t1¼ 1; d¼ 0
at t2¼ 2; d¼ 3 at t2¼ 3; red lines), and a metronomic (d¼ 3 at each of t1¼ 1, t2¼ 2, t3¼ 3; blue lines) dosing regimen, where
the total dose delivered over the cycle in each case is fixed at 9. The parameters here are l1¼ 1.0, l2¼ 1.0, g1¼ 0.2, g2¼ 1.8,
a¼ 1.0, b¼ 0.1. The solid line in each case is the total population response and the dotted line the response of the more
resistant subpopulation. Although the more up-front schedule is competitive early on, metronomic delivery provides better
long-term suppression.

Fig. 6. Resensitization rate effects on dose response. The rate at which the two subpopulations comprising a
heterogeneous tumor population attempt to re-establish their natural proportions following a dose experience may in itself
affect how effective a shift to metronomic delivery may be. Two populations are considered. Both have the same parameters
l1¼ 1.0, l2¼ 1.0, a¼ 1.0, b¼ 0.1, but in one case, there is slow resensitization (g1¼ 0.1, g2¼ 0.9), while in the second the
resensitization rate is four times faster (g1¼ 0.4, g1¼ 3.6). The differential response between irregular (solid red line) and
metronomic (solid blue line) dosing is small in the slowly resensitizing case, while the differential is very large in the quickly
resensitizing case (dotted red and blue lines). The former case may be more representative of the tumor cell population with
its broad cycling range and inefficient resensitization, and the latter more representative of the endothelial cell population
with its characteristically tighter cycling distribution and more efficient resensitization. This could explain the observed
increased therapeutic gain against endothelium under metronomic dosing.
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transition rate of cells from subpopulation 1 to 2
is g1 and that from 2 to 1 is g2 (Fig. 1). The
inclusion of transition rates between states of
different sensitivity captures a critical property
of real heterogeneous cell populations F a
tendency for their various subpopulations whose
relative proportions are altered by a toxic insult
to return to their former equilibrium proportions
once the insult ceases (Fig. 2). To illustrate this
restorative tendency using the cell cycle analogy,
if cells in mitosis are harvested preferentially
from an asynchronous cell culture, e.g. by the
well-known ‘‘mitotic shake-off’’ technique, and
are replated under the original conditions, the
cells will eventually redistribute among the cycle
phases in the same relative proportions as existed
before the shake-off. Another example is the
observed restoration over time of the pre-
treatment proportion between radiosensitive
normoxic cells and radioresistant hypoxic cells
following a dose of radiation that preferentially
kills the oxygenated subpopulation (Hall, 1988).

Population Response to General
Treatment Regimens

If the drug concentration seen by the cell
population is taken to be an arbitrary function
of time, say c(t), the complete time dependence
of the sizes of the two subpopulations in
response to the dosing becomes

dpðtÞ
dt

¼ l1 $ g1 $ acðtÞ
! "

pðtÞ þ g2qðtÞ; ð1aÞ

dqðtÞ
dt

¼ g1pðtÞ þ l2 $ g2 $ bcðtÞ
! "

qðtÞ: ð1bÞ

These subpopulation dynamics are illustrated in
Fig. 1.
A general solution to eqns 1 for arbitrary c(t)

is not available, but for combinations of bolus
doses, solutions are easy to come by based on the
straightforward solution to the dose-free case
cðtÞ & 0: The three cases that together cover the
range of dosing situations relevant to therapy are
here considered: (I) a pair of spaced bolus doses;
(II) a repeating pattern of equal bolus doses with
different spacings; and (III) a repeating pattern
of unequal bolus doses. Significant generaliza-
tions for optimum dosing follow.

Solution for Patterns of Bolus Doses

The term ‘‘bolus’’ formally refers to a very
short-lived, impulse exposure of the target cell
population to a drug concentration, and ‘‘dose’’
refers to the area under the concentration curve.
Expressions for p(t) and q(t) due to a general
series of bolus doses are sought to determine
which regimens show superior suppression for
a fixed total amount of dose. To this end, the
strategy is to move forward in time from time
zero to the time of the first dose using the
solution to the dose-free equations, then
calculate the instantaneous change to p and q
due to that dose, at which point the procedure is
repeated.
The solution to the dose-free version of eqns

(1a,b) is

pfreeðtÞ ¼ A expðr1tÞ þ B expðr2tÞ; ð2aÞ

qfreeðtÞ ¼ uA expðr1tÞ þ vB expðr2tÞ; ð2bÞ

where

u ¼
x
g2
; v ¼

$Z
g2

; r1 ¼ xþ l1 $ g1;

r2 ¼ $Zþ l1 $ g1 ð2cÞ

and

xð40Þ and $ Zðo0Þ are roots of

z2 þ ððl1 $ g1Þ $ ðl2 $ g2ÞÞz$ g1g2 ¼ 0: ð2dÞ

It follows that if we let p0(t) and q0 (t) represent
p(t) and q(t) for times tXt0 ð¼ 0Þ up to the first
bolus dose at t1, and pn(t) and qn(t) represent p(t)
and q(t) for times t between the n-th bolus dose
of size dn at time tn and the (n+1)-th bolus dose
of size dn+1 at time tn+1(nX1), then it is possible
to solve for constants Ai and Bi such that

piðtÞ ¼ Aiexpðr1tÞ þ Bi expðr2tÞ; ð3aÞ

qiðtÞ ¼ uAi expðr1tÞ þ vBiexpðr2tÞ ð3bÞ

for

tiptptiþ1; iX0; t0 ¼ 0:

and since the effect of the n-th bolus dose is to
apply the factors exp($adn) and exp($bdn) at
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Tumor heterogeneity and re-sensitization

• In the context of tumor heterogeneity, long-term minimization may often be 
the more practical objective 

• Metronomic scheduling is the best way to achieve it 

• Lends theoretical support to the anti-angiogenic basis of metronomic therapy 
as endothelial cells because of higher ability to desensitize

Fig. 5. Response to uneven vs. metronomic dose delivery. Shown are the responses to an irregular (d¼ 6 at t1¼ 1; d¼ 0
at t2¼ 2; d¼ 3 at t2¼ 3; red lines), and a metronomic (d¼ 3 at each of t1¼ 1, t2¼ 2, t3¼ 3; blue lines) dosing regimen, where
the total dose delivered over the cycle in each case is fixed at 9. The parameters here are l1¼ 1.0, l2¼ 1.0, g1¼ 0.2, g2¼ 1.8,
a¼ 1.0, b¼ 0.1. The solid line in each case is the total population response and the dotted line the response of the more
resistant subpopulation. Although the more up-front schedule is competitive early on, metronomic delivery provides better
long-term suppression.

Fig. 6. Resensitization rate effects on dose response. The rate at which the two subpopulations comprising a
heterogeneous tumor population attempt to re-establish their natural proportions following a dose experience may in itself
affect how effective a shift to metronomic delivery may be. Two populations are considered. Both have the same parameters
l1¼ 1.0, l2¼ 1.0, a¼ 1.0, b¼ 0.1, but in one case, there is slow resensitization (g1¼ 0.1, g2¼ 0.9), while in the second the
resensitization rate is four times faster (g1¼ 0.4, g1¼ 3.6). The differential response between irregular (solid red line) and
metronomic (solid blue line) dosing is small in the slowly resensitizing case, while the differential is very large in the quickly
resensitizing case (dotted red and blue lines). The former case may be more representative of the tumor cell population with
its broad cycling range and inefficient resensitization, and the latter more representative of the endothelial cell population
with its characteristically tighter cycling distribution and more efficient resensitization. This could explain the observed
increased therapeutic gain against endothelium under metronomic dosing.
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A dedicated model for metronomic chemotherapy

Benzekry, Barbolosi, Andre et al., MMNP, 2012

Hypotheses: 
1. Chemo has an anti-angiogenic effect by killing proliferative endothelial cells.  

2. Cancerous cells develop resistances to the CT whereas endothelial cells don’t.  
3. At low dose, the killing action of the drug is stronger on the endothelial 
compartment than on the tumor one

AA effect Resistance CT effect

dN

dt
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+ PK/PD model for exposure of the drug given the concentrations



A dedicated model for metronomic chemotherapy

Benzekry, Barbolosi, Andre et al., MMNP, 2012
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Modeling of toxicity and scheduling of vinorelbine in NSCLC

Barbolosi, André et al., Nat Rev Clin Oncol (2016)
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hematopoietic chain composed mainly by progenitor and 
mature cells sequences. First proposed by our group to 
describe the impact of standard treatments on hematotox-
icity [25], this model has been slightly modified and cus-
tomized to address metronomic issues now and has inte-
grated as well modifications of the initial Friberg model 
[26].

When customized to address the issues of vinorelbine 
metronomics, using Monolix software simulated data by our 
PK/PD model proved to fit the clinical data published by Bri-
assoulis et al., both in terms of efficacy and toxicity. We next 
asked the model to identify a new continuous metronomic 
schedule achieving higher efficacy while being well tolerated 
(Fig. 1). Whereas Briassoulis et al. [17] used a D1, D3, D5 

Fig. 1  Comparative model 
prediction for PK (a drug 
exposure), toxicity (b neutrophil 
counts) and efficacy (c tumor 
mass) following Briassoulis 
et al. schedule (i.e., 50 mg on 
D1, D3, D5) and the compu-
tational-based schedule (i.e., 
60, 30, 60 mg on D1, D2, D4). 
Whereas similar tolerance is 
predicted between both sched-
ules, the alternative schedule 
identified as the solution by our 
PK/PD model could lead to a 
much greater impact on tumor 
growth eventually
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describe the impact of standard treatments on hematotox-
icity [25], this model has been slightly modified and cus-
tomized to address metronomic issues now and has inte-
grated as well modifications of the initial Friberg model 
[26].

When customized to address the issues of vinorelbine 
metronomics, using Monolix software simulated data by our 
PK/PD model proved to fit the clinical data published by Bri-
assoulis et al., both in terms of efficacy and toxicity. We next 
asked the model to identify a new continuous metronomic 
schedule achieving higher efficacy while being well tolerated 
(Fig. 1). Whereas Briassoulis et al. [17] used a D1, D3, D5 

Fig. 1  Comparative model 
prediction for PK (a drug 
exposure), toxicity (b neutrophil 
counts) and efficacy (c tumor 
mass) following Briassoulis 
et al. schedule (i.e., 50 mg on 
D1, D3, D5) and the compu-
tational-based schedule (i.e., 
60, 30, 60 mg on D1, D2, D4). 
Whereas similar tolerance is 
predicted between both sched-
ules, the alternative schedule 
identified as the solution by our 
PK/PD model could lead to a 
much greater impact on tumor 
growth eventually
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Adaptive therapy

Gatenby, Nature, 2009

promote growth of resistant populations leading to tumor re-
growth and patient death. We find that adaptive therapy can
maintain a stable tumor population for a prolonged period of time,
permitting long-term survival.
We present some experimental results that establish the

feasibility of using adaptive therapy. To the best of our knowledge,
no in vivo studies using this therapeutic approach have been
previously attempted, and so our initial work was essentially
exploratory to determine if stable size could be achieved in an
aggressive tumor model using the principles of adaptive therapy.
The experiments represented only a simplistic test of the model
because the therapy variables were limited to the dose and timing
of a single drug (a complete adaptive therapy would also include
alternative drugs) and assessed tumor response only by changes in
size. Nevertheless, our results do confirm that a prolonged stable
tumor volume can be achieved through application of the
principles of adaptive therapy.
Although limited, the experimental results raise additional

interesting questions primarily because we found that control of
tumor could be achieved using progressively lower doses and
increasingly long intervals between doses. In the simulations for

tumors in which the primary mechanism of resistance is micro-
environmental, we found that enforcing a constant tumor volume
allowed ‘‘normalization’’ of the intratumoral vasculature. This
permitted tumor control with decreasing amount of drugs and,
more importantly, resulted in an end point in which all of the tumor
cells were sensitive to the chemotherapeutic agent. If this is con-
firmed experimentally, we note that this progression toward maxi-
mal sensitivity over time during tumor volume stabilization may
offer an additional adaptive therapy strategy in which high dose
density cytotoxic drugs could be administered with maximal effec-
tiveness after an initial therapy aimed to maintain a constant size.
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Figure 5. Two different experiments as
described in the text. The y-axis is the
mean tumor volume for the four animals in
each experimental group, and the x -axis
is the time from s.c. inoculation of 107

tumor cells. Each experiment included four
animals in three experimental arms:
(a ) control (vehicle only); (b) ‘‘standard’’
high dose therapy consisting of 60 mg/kg
q4 days for 3 doses; (c ) adaptive therapy
which begins with a dose of 50 mg/kg
and then adjusts the dose to maintain a
stable tumor volume. The arrows on the
x -axis represent days in which therapy was
given in the adaptive group. In the top
experiment, the doses are (from left to right)
50, 40, 40, 30, 30, 20, 20, 10, 10, 10,
10, 10, 10, 10, 10, 10 mg/kg. In the lower
experiment, the doses are 50, 50, 40, 40,
30, 20, 20, 10, 10, 10, 10, 10, 10 mg/kg.
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A change of strategy in the war on cancer
Patients and politicians anxiously await and increasingly demand a ‘cure’ for cancer. But trying to control the 

disease may prove a better plan than striving to cure it, says Robert A. Gatenby.
The German Nobel laureate Paul Ehrlich 
introduced the concept of ‘magic bullets’ 
more than 100 years ago: compounds that 
could be engineered to selectively target and 
kill tumour cells or disease-causing organ-
isms without affecting the normal cells in 
the body. The success of antibiotics 50 years 
later seemed to be a strong validation of 
Ehrlich’s idea. Indeed, so 
influential and enduring was 
medicine’s triumph over bac-
teria that the ‘war on cancer’ 
continues to be driven by 
the implicit assumption that 
magic bullets will one day be 
found for the disease. 

Yet lessons learned in 
dealing with exotic species, combined with 
recent mathematical models of the evo-
lutionary dynamics of tumours, indicate 
that eradicating most disseminated cancers 
may be impossible. And, more importantly, 
trying to do so could make the problem worse. 

In 1854, the year Ehrlich was born, the 
diamondback moth, Plutella xylostella, was 
first observed in Illinois. Within five decades, 
the moth, whose larvae feed on vegetables 
such as cabbage and Brussels sprouts, had 
spread throughout North America. It now 
infests the Americas, Europe, Asia and Aus-
tralia. Attempts to eradicate it using various 

chemicals suppressed popu-
lations only fleetingly and, 
in the late 1980s, biologists 
found strains resistant to all 
known insecticides. Over 
the past couple of decades, 
agriculturalists have aban-
doned efforts to eliminate 
the diamond back moth. 

Instead, most now apply insecticides only 
when infestation exceeds some threshold 
level with the goal of producing a sustainable 
and satisfactory crop. 

Under the banner of ‘integrated pest 
management’, hundreds of invasive species 

are now successfully controlled with strategies 
that restrict population growth. By contrast, 
very few such species have been eradicated. 
An infestation of the giant African snail, 
Achatina fulica, was eliminated in Miami, 
Florida, in the 1960s, for instance. But the 
snail is easy to catch and, in this case, it had 
spread to only a few city blocks. Two centu-
ries of experience have shown that the vast 
majority of introduced species are simply 
too heterogeneous, too dispersed and too 
adaptive to be eliminated.

Adapt and conquer
The dynamics of exotic species and invasive 
cancers differ in many obvious and subtle 
ways, yet there are important similarities. The 
invasion of pests involves dispersal, prolifera-
tion, migration and evolution — all of which 
are analogous to the processes that allow 
cancer cells to spread from a primary tumour 
into adjacent tissues or to new locations in 
the body via the lymphatic system or blood 

“The principles for 
successful cancer 

therapy might lie in the 
evolutionary dynamics 

of applied ecology.”
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• Evolutionary viewpoint of 

resistance to therapy. Darwinian 

selection 

• Complex dynamics are hard to 

control. Why, then, use fixed, rigid 

protocols of drugs, dose and 

timing? 

• Gatenby suggests to rather adapt 

the protocol as the tumor evolves in 

response to therapy
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CT/AA combination. What sequence?
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Revised Figure

Benzekry, Pasquier, Andre et al., Semin Cancer Biol, 2015

• Although mathematics are a 

discipline far from medicine, 

theoretical models have often 

driven the paradigms 

underlying chemotherapy 

schedules 

• Rational design of 

chemotherapy protocols… 

• …and sequences in 

combination therapies (CT/AA, 

radio-immuno therapy)



• Bevacizumab = anti-VEGF monoclonal antibody ⇒ anti-angiogenic action (first 

approved in 2004) 

• Only proved clinical efficacy when combined (concomitantly) with cytotoxics

Vascular normalization: a time window  for 
improved pharmacokinetics?
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also known as anti-vascular therapy, could starve a tumor by
choking off its blood supply. Once a unique marker for all
tumor vessels (new as well as established) is identified, sev-
eral available ‘smart’ strategies can be used to destroy these
vessels20,21. Progress has been made towards identifying these
markers22,23, but their uniqueness and consistency have yet
to be demonstrated. If these markers are present in normal
vessels, the vessels might be damaged by the therapy. If
these markers are present only on some tumor vessels and
not others, the tumors without markers might relapse.
Perhaps anti-angiogenic approaches, used in conjuction
with anti-vascular agents, can prevent post-therapy relapse.

Is there a role, then, for the passive targeting of tumor vas-
culature? Chemotherapy and radiation therapy may serve
this function by killing cancer cells that compress tumor
vessels, thereby increasing blood flow24. Like a fraction of
cancer cells in a tumor, a fraction of endothelial cells in
tumor vessels proliferates rapidly. It seems reasonable that
these rapidly proliferating cells (endothelial cells, circulat-
ing endothelial precursors and cancer cells) will respond to
chemo- and radiation therapy. The endothelial cells are con-
sidered genetically stable and might not develop drug 
resistance—one rationale underlying low-dose chronic
chemotherapy. Chemotherapy may also target cancer cells
that are in the process of invading the vessel lumen and
being shed into the circulation. But, in general, chronic low-
dose chemotherapy alone has not led to long-term cure of
drug-resistant tumors2,3. Is this because tumor cells develop
mutations that allow them to survive in hypoxic environ-
ments5? Or is it because the epigenetic changes in endothe-
lial cells (such as enzyme induction or upregulation of a
receptor) lead to ‘resistance’? Or because the tumor exhausts
its supply of proliferating endothelial cells and the remain-
ing quiescent endothelial cells do not respond to cytotoxic
therapies alone? In the latter case, cure might require com-
bining cytotoxic therapies with anti-angiogenic therapy.
Anti-angiogenic therapy might make endothelial cells more
sensitive to cytotoxic therapies and/or vice versa. Anti-an-
giogenic therapy might also increase the efficiency of the
tumor vasculature, increasing the delivery of drugs or oxy-
gen6,13,14. Though not explicitly acknowledged, there is a
danger that the increased availability of nutrients might fa-
cilitate tumor growth and contribute to the delayed regres-

sion often observed after anti-angiogenic therapy.
The decision of whether and when to stop pruning the

tumor vasculature depends on the objective of the anti-an-
giogenic therapy. If the goal is to deprive the tumor of its
blood supply, therapy must continue until the vasculature
no longer functions. If the goal is to improve vascular effi-
ciency, treatments must be fine-tuned accordingly. The del-
icate balance between too many and too few endothelial
and perivascular cells warrants careful attention to the
scheduling and dosing of combination therapies. Optimal
scheduling may take advantage of a window of opportunity
created by anti-angiogenic therapy wherein cytotoxic agents
will have maximal access to cancer cells. This hypothesis is
supported by the successful outcome from the combination
of TNP-470 with cytotoxic therapies2,6. On the other hand,
suboptimal scheduling may lead to antagonism between cy-
totoxic and anti-angiogenic therapies. This has happened in
cases where TNP-470 was combined with radiation therapy25

or chemotherapy26.
A major challenge in anti-angiogenesis clinical trials is the

optimization of dose and schedule for combination therapy
for individual patients. Although serial tumor biopsies can
provide the necessary information, they are difficult to ob-
tain. Therefore, imaging technologies and surrogate markers
that permit specific phenotypic changes to be quantified
during anti-angiogenic therapy (such as vessel diameter,
vessel tortuosity, vessel density, vascular permeability, par-
tial pressure of oxygen or interstitial pressure) are urgently
needed. Concerted efforts are underway to adapt magnetic
resonance imaging, computerized tomography, positron
emission tomography, ultrasound and various optical tech-
niques. As well as providing a global measure of the vascular
phenotype, these techniques need to map the functional
heterogeneities in a tumor. Similarly, surrogate markers of
angiogenesis in blood would not only facilitate dosing and
dose scheduling but also identify high-risk individuals who
would benefit from preventive anti-angiogenic therapy27. In
the meantime, interstitial fluid pressure, which is relatively
easy to measure with minimally invasive and inexpensive
technology8,24, may serve as an indicator of the normality of
a tumor’s vascular physiology. And, indeed, decreased inter-
stitial fluid pressure has recently been shown to be a good
prognostic factor in cervical cancer patients28.

The original rationale for combination therapy was to de-
stroy two separate cell populations: endothelial cells and
cancer cells. Since these two populations are interdepen-
dent, destroying the vasculature reduces the opportunity to

Fig. 1 Schematic of changes in tumor vasculature during the course of
anti-angiogenic therapy. a, Normal vasculature, composed of mature ves-
sels and maintained by the perfect balance of pro- and anti-angiogenic
molecules, might not change during the course of anti-angiogenic ther-
apy. b, Abnormal tumor vasculature, composed largely of immature ves-
sels with increased permeability, vessel diameter, vessel length, vessel
density, tortuosity and interstitial fluid pressure, compromises the delivery
of therapeutics and nutrients. c, Judiciously applied direct or indirect anti-
angiogenic therapies might prune immature vessels, leading to more nor-
malized tumor vasculature. This network should be more efficient for the
delivery of therapeutics and nutrients. d, Rapid pruning of, or coagulation
in, tumor vasculature might reduce the vasculature to the point that it is
inadequate to support tumor growth and might lead to tumor dormancy.
This is the ultimate goal of anti-angiogenic/anti-vascular therapy.
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choking off its blood supply. Once a unique marker for all
tumor vessels (new as well as established) is identified, sev-
eral available ‘smart’ strategies can be used to destroy these
vessels20,21. Progress has been made towards identifying these
markers22,23, but their uniqueness and consistency have yet
to be demonstrated. If these markers are present in normal
vessels, the vessels might be damaged by the therapy. If
these markers are present only on some tumor vessels and
not others, the tumors without markers might relapse.
Perhaps anti-angiogenic approaches, used in conjuction
with anti-vascular agents, can prevent post-therapy relapse.

Is there a role, then, for the passive targeting of tumor vas-
culature? Chemotherapy and radiation therapy may serve
this function by killing cancer cells that compress tumor
vessels, thereby increasing blood flow24. Like a fraction of
cancer cells in a tumor, a fraction of endothelial cells in
tumor vessels proliferates rapidly. It seems reasonable that
these rapidly proliferating cells (endothelial cells, circulat-
ing endothelial precursors and cancer cells) will respond to
chemo- and radiation therapy. The endothelial cells are con-
sidered genetically stable and might not develop drug 
resistance—one rationale underlying low-dose chronic
chemotherapy. Chemotherapy may also target cancer cells
that are in the process of invading the vessel lumen and
being shed into the circulation. But, in general, chronic low-
dose chemotherapy alone has not led to long-term cure of
drug-resistant tumors2,3. Is this because tumor cells develop
mutations that allow them to survive in hypoxic environ-
ments5? Or is it because the epigenetic changes in endothe-
lial cells (such as enzyme induction or upregulation of a
receptor) lead to ‘resistance’? Or because the tumor exhausts
its supply of proliferating endothelial cells and the remain-
ing quiescent endothelial cells do not respond to cytotoxic
therapies alone? In the latter case, cure might require com-
bining cytotoxic therapies with anti-angiogenic therapy.
Anti-angiogenic therapy might make endothelial cells more
sensitive to cytotoxic therapies and/or vice versa. Anti-an-
giogenic therapy might also increase the efficiency of the
tumor vasculature, increasing the delivery of drugs or oxy-
gen6,13,14. Though not explicitly acknowledged, there is a
danger that the increased availability of nutrients might fa-
cilitate tumor growth and contribute to the delayed regres-

sion often observed after anti-angiogenic therapy.
The decision of whether and when to stop pruning the

tumor vasculature depends on the objective of the anti-an-
giogenic therapy. If the goal is to deprive the tumor of its
blood supply, therapy must continue until the vasculature
no longer functions. If the goal is to improve vascular effi-
ciency, treatments must be fine-tuned accordingly. The del-
icate balance between too many and too few endothelial
and perivascular cells warrants careful attention to the
scheduling and dosing of combination therapies. Optimal
scheduling may take advantage of a window of opportunity
created by anti-angiogenic therapy wherein cytotoxic agents
will have maximal access to cancer cells. This hypothesis is
supported by the successful outcome from the combination
of TNP-470 with cytotoxic therapies2,6. On the other hand,
suboptimal scheduling may lead to antagonism between cy-
totoxic and anti-angiogenic therapies. This has happened in
cases where TNP-470 was combined with radiation therapy25

or chemotherapy26.
A major challenge in anti-angiogenesis clinical trials is the

optimization of dose and schedule for combination therapy
for individual patients. Although serial tumor biopsies can
provide the necessary information, they are difficult to ob-
tain. Therefore, imaging technologies and surrogate markers
that permit specific phenotypic changes to be quantified
during anti-angiogenic therapy (such as vessel diameter,
vessel tortuosity, vessel density, vascular permeability, par-
tial pressure of oxygen or interstitial pressure) are urgently
needed. Concerted efforts are underway to adapt magnetic
resonance imaging, computerized tomography, positron
emission tomography, ultrasound and various optical tech-
niques. As well as providing a global measure of the vascular
phenotype, these techniques need to map the functional
heterogeneities in a tumor. Similarly, surrogate markers of
angiogenesis in blood would not only facilitate dosing and
dose scheduling but also identify high-risk individuals who
would benefit from preventive anti-angiogenic therapy27. In
the meantime, interstitial fluid pressure, which is relatively
easy to measure with minimally invasive and inexpensive
technology8,24, may serve as an indicator of the normality of
a tumor’s vascular physiology. And, indeed, decreased inter-
stitial fluid pressure has recently been shown to be a good
prognostic factor in cervical cancer patients28.

The original rationale for combination therapy was to de-
stroy two separate cell populations: endothelial cells and
cancer cells. Since these two populations are interdepen-
dent, destroying the vasculature reduces the opportunity to

Fig. 1 Schematic of changes in tumor vasculature during the course of
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sels and maintained by the perfect balance of pro- and anti-angiogenic
molecules, might not change during the course of anti-angiogenic ther-
apy. b, Abnormal tumor vasculature, composed largely of immature ves-
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also known as anti-vascular therapy, could starve a tumor by
choking off its blood supply. Once a unique marker for all
tumor vessels (new as well as established) is identified, sev-
eral available ‘smart’ strategies can be used to destroy these
vessels20,21. Progress has been made towards identifying these
markers22,23, but their uniqueness and consistency have yet
to be demonstrated. If these markers are present in normal
vessels, the vessels might be damaged by the therapy. If
these markers are present only on some tumor vessels and
not others, the tumors without markers might relapse.
Perhaps anti-angiogenic approaches, used in conjuction
with anti-vascular agents, can prevent post-therapy relapse.

Is there a role, then, for the passive targeting of tumor vas-
culature? Chemotherapy and radiation therapy may serve
this function by killing cancer cells that compress tumor
vessels, thereby increasing blood flow24. Like a fraction of
cancer cells in a tumor, a fraction of endothelial cells in
tumor vessels proliferates rapidly. It seems reasonable that
these rapidly proliferating cells (endothelial cells, circulat-
ing endothelial precursors and cancer cells) will respond to
chemo- and radiation therapy. The endothelial cells are con-
sidered genetically stable and might not develop drug 
resistance—one rationale underlying low-dose chronic
chemotherapy. Chemotherapy may also target cancer cells
that are in the process of invading the vessel lumen and
being shed into the circulation. But, in general, chronic low-
dose chemotherapy alone has not led to long-term cure of
drug-resistant tumors2,3. Is this because tumor cells develop
mutations that allow them to survive in hypoxic environ-
ments5? Or is it because the epigenetic changes in endothe-
lial cells (such as enzyme induction or upregulation of a
receptor) lead to ‘resistance’? Or because the tumor exhausts
its supply of proliferating endothelial cells and the remain-
ing quiescent endothelial cells do not respond to cytotoxic
therapies alone? In the latter case, cure might require com-
bining cytotoxic therapies with anti-angiogenic therapy.
Anti-angiogenic therapy might make endothelial cells more
sensitive to cytotoxic therapies and/or vice versa. Anti-an-
giogenic therapy might also increase the efficiency of the
tumor vasculature, increasing the delivery of drugs or oxy-
gen6,13,14. Though not explicitly acknowledged, there is a
danger that the increased availability of nutrients might fa-
cilitate tumor growth and contribute to the delayed regres-

sion often observed after anti-angiogenic therapy.
The decision of whether and when to stop pruning the

tumor vasculature depends on the objective of the anti-an-
giogenic therapy. If the goal is to deprive the tumor of its
blood supply, therapy must continue until the vasculature
no longer functions. If the goal is to improve vascular effi-
ciency, treatments must be fine-tuned accordingly. The del-
icate balance between too many and too few endothelial
and perivascular cells warrants careful attention to the
scheduling and dosing of combination therapies. Optimal
scheduling may take advantage of a window of opportunity
created by anti-angiogenic therapy wherein cytotoxic agents
will have maximal access to cancer cells. This hypothesis is
supported by the successful outcome from the combination
of TNP-470 with cytotoxic therapies2,6. On the other hand,
suboptimal scheduling may lead to antagonism between cy-
totoxic and anti-angiogenic therapies. This has happened in
cases where TNP-470 was combined with radiation therapy25

or chemotherapy26.
A major challenge in anti-angiogenesis clinical trials is the

optimization of dose and schedule for combination therapy
for individual patients. Although serial tumor biopsies can
provide the necessary information, they are difficult to ob-
tain. Therefore, imaging technologies and surrogate markers
that permit specific phenotypic changes to be quantified
during anti-angiogenic therapy (such as vessel diameter,
vessel tortuosity, vessel density, vascular permeability, par-
tial pressure of oxygen or interstitial pressure) are urgently
needed. Concerted efforts are underway to adapt magnetic
resonance imaging, computerized tomography, positron
emission tomography, ultrasound and various optical tech-
niques. As well as providing a global measure of the vascular
phenotype, these techniques need to map the functional
heterogeneities in a tumor. Similarly, surrogate markers of
angiogenesis in blood would not only facilitate dosing and
dose scheduling but also identify high-risk individuals who
would benefit from preventive anti-angiogenic therapy27. In
the meantime, interstitial fluid pressure, which is relatively
easy to measure with minimally invasive and inexpensive
technology8,24, may serve as an indicator of the normality of
a tumor’s vascular physiology. And, indeed, decreased inter-
stitial fluid pressure has recently been shown to be a good
prognostic factor in cervical cancer patients28.

The original rationale for combination therapy was to de-
stroy two separate cell populations: endothelial cells and
cancer cells. Since these two populations are interdepen-
dent, destroying the vasculature reduces the opportunity to

Fig. 1 Schematic of changes in tumor vasculature during the course of
anti-angiogenic therapy. a, Normal vasculature, composed of mature ves-
sels and maintained by the perfect balance of pro- and anti-angiogenic
molecules, might not change during the course of anti-angiogenic ther-
apy. b, Abnormal tumor vasculature, composed largely of immature ves-
sels with increased permeability, vessel diameter, vessel length, vessel
density, tortuosity and interstitial fluid pressure, compromises the delivery
of therapeutics and nutrients. c, Judiciously applied direct or indirect anti-
angiogenic therapies might prune immature vessels, leading to more nor-
malized tumor vasculature. This network should be more efficient for the
delivery of therapeutics and nutrients. d, Rapid pruning of, or coagulation
in, tumor vasculature might reduce the vasculature to the point that it is
inadequate to support tumor growth and might lead to tumor dormancy.
This is the ultimate goal of anti-angiogenic/anti-vascular therapy.
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Anti-angiogenic therapy might make endothelial cells more
sensitive to cytotoxic therapies and/or vice versa. Anti-an-
giogenic therapy might also increase the efficiency of the
tumor vasculature, increasing the delivery of drugs or oxy-
gen6,13,14. Though not explicitly acknowledged, there is a
danger that the increased availability of nutrients might fa-
cilitate tumor growth and contribute to the delayed regres-

sion often observed after anti-angiogenic therapy.
The decision of whether and when to stop pruning the

tumor vasculature depends on the objective of the anti-an-
giogenic therapy. If the goal is to deprive the tumor of its
blood supply, therapy must continue until the vasculature
no longer functions. If the goal is to improve vascular effi-
ciency, treatments must be fine-tuned accordingly. The del-
icate balance between too many and too few endothelial
and perivascular cells warrants careful attention to the
scheduling and dosing of combination therapies. Optimal
scheduling may take advantage of a window of opportunity
created by anti-angiogenic therapy wherein cytotoxic agents
will have maximal access to cancer cells. This hypothesis is
supported by the successful outcome from the combination
of TNP-470 with cytotoxic therapies2,6. On the other hand,
suboptimal scheduling may lead to antagonism between cy-
totoxic and anti-angiogenic therapies. This has happened in
cases where TNP-470 was combined with radiation therapy25

or chemotherapy26.
A major challenge in anti-angiogenesis clinical trials is the

optimization of dose and schedule for combination therapy
for individual patients. Although serial tumor biopsies can
provide the necessary information, they are difficult to ob-
tain. Therefore, imaging technologies and surrogate markers
that permit specific phenotypic changes to be quantified
during anti-angiogenic therapy (such as vessel diameter,
vessel tortuosity, vessel density, vascular permeability, par-
tial pressure of oxygen or interstitial pressure) are urgently
needed. Concerted efforts are underway to adapt magnetic
resonance imaging, computerized tomography, positron
emission tomography, ultrasound and various optical tech-
niques. As well as providing a global measure of the vascular
phenotype, these techniques need to map the functional
heterogeneities in a tumor. Similarly, surrogate markers of
angiogenesis in blood would not only facilitate dosing and
dose scheduling but also identify high-risk individuals who
would benefit from preventive anti-angiogenic therapy27. In
the meantime, interstitial fluid pressure, which is relatively
easy to measure with minimally invasive and inexpensive
technology8,24, may serve as an indicator of the normality of
a tumor’s vascular physiology. And, indeed, decreased inter-
stitial fluid pressure has recently been shown to be a good
prognostic factor in cervical cancer patients28.

The original rationale for combination therapy was to de-
stroy two separate cell populations: endothelial cells and
cancer cells. Since these two populations are interdepen-
dent, destroying the vasculature reduces the opportunity to

Fig. 1 Schematic of changes in tumor vasculature during the course of
anti-angiogenic therapy. a, Normal vasculature, composed of mature ves-
sels and maintained by the perfect balance of pro- and anti-angiogenic
molecules, might not change during the course of anti-angiogenic ther-
apy. b, Abnormal tumor vasculature, composed largely of immature ves-
sels with increased permeability, vessel diameter, vessel length, vessel
density, tortuosity and interstitial fluid pressure, compromises the delivery
of therapeutics and nutrients. c, Judiciously applied direct or indirect anti-
angiogenic therapies might prune immature vessels, leading to more nor-
malized tumor vasculature. This network should be more efficient for the
delivery of therapeutics and nutrients. d, Rapid pruning of, or coagulation
in, tumor vasculature might reduce the vasculature to the point that it is
inadequate to support tumor growth and might lead to tumor dormancy.
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Therapeutic question 

What is the optimal time gap between administration of bevacizumab and cytotoxic 

chemotherapy? How to capture inter-individual variability for designing personalized 
therapies?

• Possible explanation: transient normalization of the otherwise abnormal 

(leaky, tortuous)  vascular architecture 



Lung cancer model

Hypothesis: sequential use of bevacizumab associated with chemotherapy would 
achieve better efficacy and modeling support could help to define the optimal time-

window
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Sequential administration Beva then Chemo improves response and survival
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• (H4) In the absence of data monitoring the state of the tumor vasculature, the 

antiangiogenic effect of bevacizumab is not explicitly modeled. 

(H5) Beside its antiangiogenic activity, bevacizumab increases the drugs delivery by 

improving the vasculature quality � (32). The dynamics of this improvement is 

assumed to follow the bevacizumab concentration, delayed by a time shift � for the 

normalization to occur. The magnitude of the improvement is controlled by a parameter 

�.The above assumptions are translated into the following system of nonlinear ordinary 

differential equations: 

��
�� = � − � ln �

�7
� − ���� � � = 0 = �E

� � = 	1 + �� � − �
��)
�� = ���� − ��) �) � = 0 = 0
��G
�� = � �) − �G 	 �G � = 0 = 0
��H
�� = � �G − �H �H � = 0 = 0
� = � + �) + �G + �H	

 

The initial size �E was set to 7.04 x 106 photons/second considering that 80 000 cells 

were injected (experiment-1) and a previously established conversion ratio of �7 =	1 

cell » 88 photons/second (33). 

Statistical	model	and	parameters	estimation	

For description of the inter-animal variability we used the nonlinear mixed-effects 

statistical framework (34). It consists in assuming a distribution of the parameters within 

the animal population, taken here to be lognormal for each parameter. Importantly, 

these were the same for all treatment groups. The structural model above depends on 

6 parameters (�, �, �, �, �, �).	 After an initial sensitivity analysis showing that not all of 

these parameters were identifiable from our data set, we reduced this to the 4 
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Model fits: individual + population level (NLME)

Simultaneous

Time (days)
0 20 40 60 80

B
io

lu
m

in
e
sc

e
n
ce

 (
p
/s

)

108

1010

Beva

Chemo

Sequential B/C

Time (days)
0 20 40 60 80

B
io

lu
m

in
e
sc

e
n
ce

 (
p
/s

)

108

1010

Beva

Chemo

Control

Time (days)
0 20 40 60 80

B
io

lu
m

in
e

sc
e
n

ce
 (

p
/s

)

108

1010

Sequential C/B

Time (days)
0 20 40 60 80

B
io

lu
m

in
e
sc

e
n
ce

 (
p
/s

)

108

1010

Beva

Chemo

Time (days)
0 10 20 30 40 50 60 70

B
io

lu
m

in
e

sc
e

n
ce

 (
p

/s
)

×1010

0

1

2

3

4

5

6

Beva

Chemo

Beva

Chemo

Beva

Chemo

Median growth curves

Imbs et al., Benzekry, CPT: Pharmacometrics and Systems Pharmacology, 2018

Control Sequential C/B Simultaneous Sequential B/C

Time (days)
0 10 20 30 40 50 60 70

B
io

lu
m

in
e

sc
e

n
ce

 (
p

/s
)

×1010

0

0.5

1

1.5

2

2.5

3

Time (days)
0 10 20 30 40 50 60 70

B
io

lu
m

in
e

sc
e

n
ce

 (
p

/s
)

×1010

0

0.5

1

1.5

2

2.5

3

Beva

Chimio

Time (days)
0 10 20 30 40 50 60 70

B
io

lu
m

in
e

sc
e

n
ce

 (
p

/s
)

×1010

0

0.5

1

1.5

2

2.5

3

Beva

Chimio

Time (days)
0 10 20 30 40 50 60 70

B
io

lu
m

in
e

sc
e

n
ce

 (
p

/s
)

×1010

0

0.5

1

1.5

2

2.5

3

Beva

Chimio

Time (days)
0 10 20 30 40 50 60 70

B
io

lu
m

in
e

sc
e

n
ce

 (
p

/s
)

106

107

108

109

1010

1011

Time (days)
0 10 20 30 40 50 60 70

B
io

lu
m

in
e

sc
e

n
ce

 (
p

/s
)

106

107

108

109

1010

1011

Beva

Chimio

Time (days)
0 10 20 30 40 50 60 70

B
io

lu
m

in
e

sc
e

n
ce

 (
p

/s
)

106

107

108

109

1010

1011

Beva

Chimio

Time (days)
0 10 20 30 40 50 60 70

B
io

lu
m

in
e

sc
e

n
ce

 (
p

/s
)

106

107

108

109

1010

1011

Beva

Chimio

Days
0 10 20 30 40 50

B
io

lu
m

in
e

sc
e

n
ce

 (
p

/s
)

×109

0

2

4

6

8

10

12

14

16

18

Days
0 10 20 30 40 50 60 70

B
io

lu
m

in
e

sc
e

n
ce

 (
p

/s
)

×109

0

1

2

3

4

5

6

7

8

Beva

Chimio

Days
0 10 20 30 40 50 60 70

B
io

lu
m

in
e

sc
e

n
ce

 (
p

/s
)

×109

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Beva

Chimio

Days
0 10 20 30 40 50 60 70

B
io

lu
m

in
e

sc
e

n
ce

 (
p

/s
)

×109

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Beva

Chimio

Model Par. Unit Median value (CV) NSE

(%)

TestModelV4

a 0.103 (37.9) 5.77
b 8.77 (94.5) 12.4
f 1.19 (38.5) 8.58
g 1.18 (1.78) 0.734

F
in

a
l B

L
 (

p
/s

)

×1010

0

1

2

3

4

5

6

7

8

Control
Simultaneous
Sequential B/C
Sequential C/B

Time (days)
0 10 20 30 40 50 60 70

B
io

lu
m

in
e

sc
e

n
ce

 (
p

/s
)

×1010

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Beva

Chimio

Beva

Chimio

Beva

Chimio

Figure 9 – Fit of the BEVALUNG data using the TestModelV4 and population mixed-e�ects
statistical modeling for inter-animal variability.. In these fits, the data C/B was not used
(computations were tool long). 12
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Figure 9 – Fit of the BEVALUNG data using the TestModelV4 and population mixed-e�ects
statistical modeling for inter-animal variability.. In these fits, the data C/B was not used
(computations were tool long). 12

Control Sequential C/B Simultaneous Sequential B/C

Time (days)
0 10 20 30 40 50 60 70

B
io

lu
m

in
e

sc
e

n
ce

 (
p

/s
)

×1010

0

0.5

1

1.5

2

2.5

3

Time (days)
0 10 20 30 40 50 60 70

B
io

lu
m

in
e

sc
e

n
ce

 (
p

/s
)

×1010

0

0.5

1

1.5

2

2.5

3

Beva

Chimio

Time (days)
0 10 20 30 40 50 60 70

B
io

lu
m

in
e

sc
e

n
ce

 (
p

/s
)

×1010

0

0.5

1

1.5

2

2.5

3

Beva

Chimio

Time (days)
0 10 20 30 40 50 60 70

B
io

lu
m

in
e

sc
e

n
ce

 (
p

/s
)

×1010

0

0.5

1

1.5

2

2.5

3

Beva

Chimio

Time (days)
0 10 20 30 40 50 60 70

B
io

lu
m

in
e

sc
e

n
ce

 (
p

/s
)

106

107

108

109

1010

1011

Time (days)
0 10 20 30 40 50 60 70

B
io

lu
m

in
e

sc
e

n
ce

 (
p

/s
)

106

107

108

109

1010

1011

Beva

Chimio

Time (days)
0 10 20 30 40 50 60 70

B
io

lu
m

in
e

sc
e

n
ce

 (
p

/s
)

106

107

108

109

1010

1011

Beva

Chimio

Time (days)
0 10 20 30 40 50 60 70

B
io

lu
m

in
e

sc
e

n
ce

 (
p

/s
)

106

107

108

109

1010

1011

Beva

Chimio

Days
0 10 20 30 40 50

B
io

lu
m

in
e
sc

e
n
ce

 (
p
/s

)

×109

0

2

4

6

8

10

12

14

16

18

Days
0 10 20 30 40 50 60 70

B
io

lu
m

in
e

sc
e

n
ce

 (
p

/s
)

×109

0

1

2

3

4

5

6

7

8

Beva

Chimio

Days
0 10 20 30 40 50 60 70

B
io

lu
m

in
e

sc
e

n
ce

 (
p

/s
)

×109

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Beva

Chimio

Days
0 10 20 30 40 50 60 70

B
io

lu
m

in
e

sc
e

n
ce

 (
p

/s
)

×109

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Beva

Chimio

Model Par. Unit Median value (CV) NSE

(%)

TestModelV4

a 0.103 (37.9) 5.77
b 8.77 (94.5) 12.4
f 1.19 (38.5) 8.58
g 1.18 (1.78) 0.734

F
in

a
l B

L
 (

p
/s

)

×1010

0

1

2

3

4

5

6

7

8

Control
Simultaneous
Sequential B/C
Sequential C/B

Time (days)
0 10 20 30 40 50 60 70

B
io

lu
m

in
e
sc

e
n
ce

 (
p
/s

)

×1010

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Beva

Chimio

Beva

Chimio

Beva

Chimio

Figure 9 – Fit of the BEVALUNG data using the TestModelV4 and population mixed-e�ects
statistical modeling for inter-animal variability.. In these fits, the data C/B was not used
(computations were tool long). 12
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rank test showed a significant difference between all groups
(P< 0.0001). Further log-rank tests showed that each treat-
ment group was significantly different than the control arm
(P< 0.001). Moreover, the sequential administration in the
“beva then chemo 4 days” arm had greater survival median
and was significantly different than concomitant in the
“beva1 chemo” (P5 0.0485) and reversed in the “chemo
then beva 4 days” arms (P5 0.0496). Conversely, no signif-
icant difference was observed between the “beva1 chemo”
and the “chemo then beva 4 days” arms (P5 0.631).

Mathematical modeling predicted an optimal time delay
of 3 days between the administration of bevacizumab
and pemetrexed1 cisplatin
The selected model is a modified version of the Gompertz
model with a delay in the treatment effects32 and inclusion of
a dynamic variable Q accounting for the vasculature quality
and, thus, the normalization effect. See the Materials and
Methods section for a detailed description of the model equa-
tion, data fit, and parameters’ estimation method. Population
analysis yielded the median parameter and interanimal vari-
ability estimates reported in Table 1 with good relative stan-
dard errors. Goodness-of-fit was assessed by visual
predictive check plots (Figure 3a-d), which demonstrated a

good agreement between the model simulations and the
experimental data (see residual analysis in Supplementary
Figure S7). Individual simulations also demonstrated the
ability of our model to reproduce tumor growth dynamics for
each mouse (Supplementary Figure S8).
The model with parameters calibrated on the experimen-

tal data allowed us to perform simulations varying the time
lag between the administrations of bevacizumab and the
pemetrexed-cisplatin doublet. The criterion for quantification
of efficacy was the area under the tumor growth curve.
Delays ranging from 1–10 days were tested. Simulation
results showed that a 2.8-days delay between bevacizumab
and chemotherapy achieved greater reduction in tumor
sizes, with a difference of 76.8% in tumor size as compared
with concomitant scheduling (Figure 4a-c). Our quantifica-
tion of the normalization dynamics also predicted that a
delay of 8 days would perform substantially worse, with a
difference of only 54.3% compared with concomitant admin-
istration (Figure 4c). Quantification of the interanimal vari-
ability of the model parameters using our population
approach allowed to simulate the resulting interanimal vari-
ability of the optimal interdrug administration gap. The opti-
mal gap ranged from 0–10 days with median of 2.8 days
and standard deviation of 1.84 days (Figure 4d).
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data. Stars with broken lines: median data. Solid lines: tumor growth simulated curves using median parameter values, dashed lines:
95% intervals for interanimal variability, generated from the simulation of 1,000 virtual animals with parameters distributed according to
the distribution estimated by the mixed-effects fit. Beva, bevacizumab; Chemo, chemotherapy.
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each mouse (Supplementary Figure S8).
The model with parameters calibrated on the experimen-

tal data allowed us to perform simulations varying the time
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of efficacy was the area under the tumor growth curve.
Delays ranging from 1–10 days were tested. Simulation
results showed that a 2.8-days delay between bevacizumab
and chemotherapy achieved greater reduction in tumor
sizes, with a difference of 76.8% in tumor size as compared
with concomitant scheduling (Figure 4a-c). Our quantifica-
tion of the normalization dynamics also predicted that a
delay of 8 days would perform substantially worse, with a
difference of only 54.3% compared with concomitant admin-
istration (Figure 4c). Quantification of the interanimal vari-
ability of the model parameters using our population
approach allowed to simulate the resulting interanimal vari-
ability of the optimal interdrug administration gap. The opti-
mal gap ranged from 0–10 days with median of 2.8 days
and standard deviation of 1.84 days (Figure 4d).

(a) (b)

(c) (d)

Figure 3 Visual predictive check for experiment one population analysis. (a–d) Visual predictive check plots. Circles: experimental
data. Stars with broken lines: median data. Solid lines: tumor growth simulated curves using median parameter values, dashed lines:
95% intervals for interanimal variability, generated from the simulation of 1,000 virtual animals with parameters distributed according to
the distribution estimated by the mixed-effects fit. Beva, bevacizumab; Chemo, chemotherapy.

Revisiting Bevacizumab1Cytotoxics Scheduling
Imbs et al.

5

www.psp-journal.com



Prediction of the optimal delay
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3 Metastasis 



Clinical problems related to metastasis

• Breast 

• 94% of cases are local or regional at diagnosis but 30% will relapse Pollard, N 
Eng J Med, 2016 

• Estimate the amount of residual distant disease at diagnosis in order to 
personalize the adjuvant (chemo)-therapy  

• Avoid unnecessary, heavy toxicities 

• Lung 

• 57% of cases are metastatic 

• For a patient with one or little brain metastases, decide whether to use whole 
brain radiation therapy or just (stereotactic) surgery 

• Avoid cognitive impairment of the patient

Steeg, Nat. Rev. Cancer, 2016

• Metastases are the main cause of death (>90%) from cancer Lambert and Weinberg, Cell, 2017

Institut Bergonié, Bordeaux



60 Chapter 2. Metastasis: biological dynamics at the organism scale

multiplication within organ parenchyma (Fig. 3). These
successful metastatic cells (“seed”) have been likened to a
decathlon champion who must be proficient in 10 events,
rather than just a few (64). However, some steps in this pro-

cess incorporate stochastic elements. Overall, metastasis fa-
vors the survival and growth of a few subpopulations of
cells that preexist within the parent neoplasm. The current
data, especially studies focused on isolated tumor cells,

Table 1. Steps in the metastatic process

Step Description

1 After the initial transforming event, the growth of neoplastic cells is progressive and frequently slow;
2 Vascularization is required for a tumor mass to exceed a 1- to 2-mm diameter (200, 201), and the synthesis and secretion

of angiogenesis factors has a critical role in establishing a vascular network within the surrounding host tissue (201);
3 Local invasion of the host stroma by tumor cells can occur by multiple mechanisms, including, but not limited to,

thin-walled venules and lymphatic channels, both of which offer little resistance to tumor cell invasion (202);
4 Detachment and embolization of tumor cell aggregates, which may be increased in size via interaction with

hematopoietic cells within the circulation;
5 Circulation of these emboli within the vascular; both hematologic and lymphatic;
6 Survival of tumor cells that trafficked through the circulation and arrest in a capillary bed;
7 Extravasation of the tumor embolus, by mechanisms similar to those involved in the initial tissue invasion;
8 Proliferation of the tumor cells within the organ parenchyma resulting in a metastatic focus;
9 Establish vascularization, and defenses against host immune responses; and
10 Reinitiate these processes for the development of metastases from metastases.

Figure 3. The process of cancer metastasis consists of sequential, interlinked, and selective steps with some stochastic elements. The outcome of
each step is influenced by the interaction of metastatic cellular subpopulations with homeostatic factors. Each step of the metastatic cascade is potentially
rate limiting such that failure of a tumor cell to complete any step effectively impedes that portion of the process. Therefore, the formation of clinically
relevant metastases represents the survival and growth of selected subpopulations of cells that preexist in primary tumors.

Talmadge and Fidler

Cancer Res; 70(14) July 15, 2010 Cancer Research5654

Research. 
on April 11, 2013. © 2010 American Association for Cancercancerres.aacrjournals.org Downloaded from 

Published OnlineFirst July 7, 2010; DOI: 10.1158/0008-5472.CAN-10-1040 

Figure 2.1 – The metastatic cascade. Reproduced from [Talmadge and Fidler, 2010]

growth. A detailed review of all the mathematical modeling studies that addressed the questions
of metastatic dissemination and growth is beyond the scope of the present document (and can
be found, in part, elsewhere [Scott et al., 2013b, Clare et al., 2000]) but a few publications of
biological or clinical interest that the curious reader can consult are: [Slack et al., 1969, Liotta
et al., 1976a, Saidel et al., 1976, Guiguet et al., 1982, Koscielny et al., 1985, Klein and BartoszyÒski,
1991, Kimmel and Flehinger, 1991, Yorke et al., 1993, Retsky et al., 1997, Koscielny and Tubiana,
1999, Iwata et al., 2000, Michor et al., 2006, Hanin et al., 2006, Barbolosi et al., 2009, Bethge
et al., 2012, Haeno et al., 2012, Newton et al., 2012, Newton et al., 2013, Scott et al., 2014, Scott
et al., 2013a, Mehrara et al., 2013, Coumans et al., 2013, Araujo et al., 2014, Bazhenova et al.,
2014, Brodbeck et al., 2014, Hanin and Bunimovich-Mendrazitsky, 2014, Hanin et al., 2015, Hanin
and Rose, 2016, Poleszczuk et al., 2016].

The mathematical formalism that we develop below has been employed to address the following bi-
ological questions about metastasis, which have the common characteristic of concerning dynamics
of the disease at the organism scale.

Biological problem 2. What are the qualitative and quantitative di�erences among experimental
models of metastasis for di�erent cancer types? Is the growth of secondary tumors identical to the
growth of the primary tumor, in a given experimental system? How does the dissemination process
depend on the size of the primary tumor? What is the impact of surgery on metastatic growth and
dissemination?

Biological problem 3. Is the “standard” view of metastatic initiation and growth – that secondary
lesions once established grow without interactions with each other or with the primary tumor –
quantitatively valid for description of the dynamics of the number and size of metastases?

Talmadge and Fidler, Cancer Res, 2010



Enhanced CT scan of the liver of a kidney cancer patient with multiple metastatic tumors 

+ some of the metastases are not visible

20/01/2015 06/11/2015

F. Cornelis, CHU Bordeaux

Clinical presentation
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3. Metastasis 

3.1 Modeling spontaneous metastasis following surgery : an in vivo-in silico 

approach  

3.2 Challenging the classical view of metastasis initiation and growth 

3.3 Clinical applications 
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Dr Ebos’ lab, Roswell Park Cancer Institute

Questions 
• Minimal model of metastatic development. 

Dissemination law? Differences between mets and 
primary tumor growth? 

• Quantify the inter-subject variability of metastatic 
development 

• What is the impact of the primary tumor size at surgery 
on metastatic development and survival?

Data 
• Clinically relevant ortho-surgical animal models 

of metastasis 
• Longitudinal measurements of primary tumor 

size and total metastatic burden



SurgeryInjection (or first cell)

Metastases

Primary 
Tumor 
(PT)

Dissemination law: d(Vp)= μ(Vp) γ

PT growth law: gp(Vp)=Vp(αp-βpln(Vp)) 

Metastases growth law: g(V)=V(α-βln(V)) 

Pre-surgical Post-surgical



• Primary tumor Vp grows with rate gp  [size.day-1]

Mathematical formalismMathematical formalism 1: growth

• Primary tumor V
p

grows with rate g
p

(V
p

) (Exponential, Gompertz,
Gomp-Exp, power law,...)

d

dt
V
p

= g
p

(V
p

), V
p

(t = 0) = V
i

• Population of metastases structured
in volume v described by a density
⇢(t, v)

• Tumors grow in size with rate g(v)

) Transport equation when tumors grow

@
t

⇢(t, v) + @
v

(g(v)⇢(t, v)) = 0

t = 18 years

BACKGROUND & OBJECTIVES

AN ELEMENTARY THEORY OF METASTATIC DYNAMICS: 

DISSEMINATION + GROWTH

Modeling spontaneous metastasis following 

surgery: an in vivo-in silico approach

D. Barbolosi J. ML EbosS.Benzekry A. Tracz M. Mastri R. Corbelli

• Refinement of the metastatic aggressiveness distribution in patients subgroups 
(nodal involvement, hormonal and HER2 status,…)

• Patient-specific estimation of μ

• Differential effect of (targeted) therapies on primary tumor and metastases in 
preclinical drug development

• Metastasis remains the cause of 90% of deaths from solid tumors Chaffer and Weinberg, Science 2011
• ~ 20-30% of breast cancer patients will relapse with distant metastases EBCTG, Lancet, 2005
• For breast cancer, the current factors influencing decision for adjuvant therapy are: tumor size, nodal 

involvement, molecular factors (hormonal receptors and HER2 status), histological type and grade.
• In preclinical experiments, there is a need for a combined in vivo/in silico framework to address the effect of 

therapies on both  the primary tumor AND the metastases Ebos et al., Cancer Cell, 2009, Ebos et al., 
EMBO Mol Med, 2014

We sought to use a mathematical modeling approach for the following questions: 
• How to model in the most parsimonious way the link between pre-surgical tumor size and dynamics and 

post-surgical development of the metastases? 
• How to quantify metastatic aggressiveness (refine the M in TNM) and associated inter-individual 

variability?
• How to personalize adjuvant chemotherapy in order to limit toxicities for the low-risk patients and 

decrease the risk of metastatic relapse for high-risk patients?
• What is the quantitative impact of primary tumor resection on the future development of metastases? 
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CLINICAL DATA

2648 breast cancer patients screened for 
20 years after primary tumor resection (no 
adjuvant therapy) 
Koscielny et al., Br J Cancer, 1984
 
Cancer inception time can be inferred from 
PT volume V1 at diagnosis time T1 
(Gompertz growth).
Lognormal distribution of metastatic 
parameter μ for inter-individual variability 
(2 degrees of freedom) 
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PERSONALIZED SIMULATIONS FOR DIAGNOSIS AND PROGNOSIS

for a primary tumor of 4.32 cm
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IMPACT OF SURGERY ON SURVIVAL AS A FUNCTION OF PRIMARY TUMOR SIZE

S. Benzekry, A. Tracz, M. Mastri, R. Corbelli, D. Barbolosi, J.M.L. Ebos , Modeling spontaneous metastasis following surgery: an in vivo-in silico approach. Cancer 
Research, 10.1158/0008-5472.CAN-15-1389, 2015
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BACKGROUND & OBJECTIVES

AN ELEMENTARY THEORY OF METASTATIC DYNAMICS: 

DISSEMINATION + GROWTH

Modeling spontaneous metastasis following 

surgery: an in vivo-in silico approach

D. Barbolosi J. ML EbosS.Benzekry A. Tracz M. Mastri R. Corbelli

• Refinement of the metastatic aggressiveness distribution in patients subgroups 
(nodal involvement, hormonal and HER2 status,…)

• Patient-specific estimation of μ

• Differential effect of (targeted) therapies on primary tumor and metastases in 
preclinical drug development

• Metastasis remains the cause of 90% of deaths from solid tumors Chaffer and Weinberg, Science 2011
• ~ 20-30% of breast cancer patients will relapse with distant metastases EBCTG, Lancet, 2005
• For breast cancer, the current factors influencing decision for adjuvant therapy are: tumor size, nodal 

involvement, molecular factors (hormonal receptors and HER2 status), histological type and grade.
• In preclinical experiments, there is a need for a combined in vivo/in silico framework to address the effect of 

therapies on both  the primary tumor AND the metastases Ebos et al., Cancer Cell, 2009, Ebos et al., 
EMBO Mol Med, 2014

We sought to use a mathematical modeling approach for the following questions: 
• How to model in the most parsimonious way the link between pre-surgical tumor size and dynamics and 

post-surgical development of the metastases? 
• How to quantify metastatic aggressiveness (refine the M in TNM) and associated inter-individual 

variability?
• How to personalize adjuvant chemotherapy in order to limit toxicities for the low-risk patients and 

decrease the risk of metastatic relapse for high-risk patients?
• What is the quantitative impact of primary tumor resection on the future development of metastases? 
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2648 breast cancer patients screened for 
20 years after primary tumor resection (no 
adjuvant therapy) 
Koscielny et al., Br J Cancer, 1984
 
Cancer inception time can be inferred from 
PT volume V1 at diagnosis time T1 
(Gompertz growth).
Lognormal distribution of metastatic 
parameter μ for inter-individual variability 
(2 degrees of freedom) 
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Model fit
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2.5 < D � 3.5 42.0 42.4

3.5 < D � 4.5 56.7 56.3
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PERSONALIZED SIMULATIONS FOR DIAGNOSIS AND PROGNOSIS

for a primary tumor of 4.32 cm
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IMPACT OF SURGERY ON SURVIVAL AS A FUNCTION OF PRIMARY TUMOR SIZE

S. Benzekry, A. Tracz, M. Mastri, R. Corbelli, D. Barbolosi, J.M.L. Ebos , Modeling spontaneous metastasis following surgery: an in vivo-in silico approach. Cancer 
Research, 10.1158/0008-5472.CAN-15-1389, 2015
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and outcome
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Mathematical formalism 1: growth

• Primary tumor V
p

grows with rate g
p

(V
p

) (Exponential, Gompertz,
Gomp-Exp, power law,...)

d

dt
V
p

= g
p

(V
p

), V
p

(t = 0) = V
i

• Population of metastases structured
in volume v described by a density
⇢(t, v)

• Tumors grow in size with rate g(v)

) Transport equation when tumors grow

@
t

⇢(t, v) + @
v

(g(v)⇢(t, v)) = 0

t = 18 years

BACKGROUND & OBJECTIVES

AN ELEMENTARY THEORY OF METASTATIC DYNAMICS: 

DISSEMINATION + GROWTH

Modeling spontaneous metastasis following 

surgery: an in vivo-in silico approach

D. Barbolosi J. ML EbosS.Benzekry A. Tracz M. Mastri R. Corbelli

• Refinement of the metastatic aggressiveness distribution in patients subgroups 
(nodal involvement, hormonal and HER2 status,…)

• Patient-specific estimation of μ

• Differential effect of (targeted) therapies on primary tumor and metastases in 
preclinical drug development

• Metastasis remains the cause of 90% of deaths from solid tumors Chaffer and Weinberg, Science 2011
• ~ 20-30% of breast cancer patients will relapse with distant metastases EBCTG, Lancet, 2005
• For breast cancer, the current factors influencing decision for adjuvant therapy are: tumor size, nodal 

involvement, molecular factors (hormonal receptors and HER2 status), histological type and grade.
• In preclinical experiments, there is a need for a combined in vivo/in silico framework to address the effect of 

therapies on both  the primary tumor AND the metastases Ebos et al., Cancer Cell, 2009, Ebos et al., 
EMBO Mol Med, 2014

We sought to use a mathematical modeling approach for the following questions: 
• How to model in the most parsimonious way the link between pre-surgical tumor size and dynamics and 

post-surgical development of the metastases? 
• How to quantify metastatic aggressiveness (refine the M in TNM) and associated inter-individual 

variability?
• How to personalize adjuvant chemotherapy in order to limit toxicities for the low-risk patients and 

decrease the risk of metastatic relapse for high-risk patients?
• What is the quantitative impact of primary tumor resection on the future development of metastases? 

Figure 1
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Iwata et al., J Theor Biol, 2000
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Population fits
(nonlinear mixed-effects)

Individual fits

CLINICAL DATA

2648 breast cancer patients screened for 
20 years after primary tumor resection (no 
adjuvant therapy) 
Koscielny et al., Br J Cancer, 1984
 
Cancer inception time can be inferred from 
PT volume V1 at diagnosis time T1 
(Gompertz growth).
Lognormal distribution of metastatic 
parameter μ for inter-individual variability 
(2 degrees of freedom) 

Diameter of
primary tumor at

diagnosis (cm)

Proportion of
patients developing

metastasis (%)
Model fit

1 � D � 2.5 27.1 25.5

2.5 < D � 3.5 42.0 42.4

3.5 < D � 4.5 56.7 56.3

4.5 < D � 5.5 66.5 65.9

5.5 < D � 6.5 72.8 74.3

6.5 < D � 7.5 83.8 80.8

7.5 < D � 8.5 81.3 85.7
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PERSONALIZED SIMULATIONS FOR DIAGNOSIS AND PROGNOSIS

for a primary tumor of 4.32 cm
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BACKGROUND & OBJECTIVES

AN ELEMENTARY THEORY OF METASTATIC DYNAMICS: 

DISSEMINATION + GROWTH

Modeling spontaneous metastasis following 

surgery: an in vivo-in silico approach

D. Barbolosi J. ML EbosS.Benzekry A. Tracz M. Mastri R. Corbelli

• Refinement of the metastatic aggressiveness distribution in patients subgroups 
(nodal involvement, hormonal and HER2 status,…)

• Patient-specific estimation of μ

• Differential effect of (targeted) therapies on primary tumor and metastases in 
preclinical drug development

• Metastasis remains the cause of 90% of deaths from solid tumors Chaffer and Weinberg, Science 2011
• ~ 20-30% of breast cancer patients will relapse with distant metastases EBCTG, Lancet, 2005
• For breast cancer, the current factors influencing decision for adjuvant therapy are: tumor size, nodal 

involvement, molecular factors (hormonal receptors and HER2 status), histological type and grade.
• In preclinical experiments, there is a need for a combined in vivo/in silico framework to address the effect of 

therapies on both  the primary tumor AND the metastases Ebos et al., Cancer Cell, 2009, Ebos et al., 
EMBO Mol Med, 2014

We sought to use a mathematical modeling approach for the following questions: 
• How to model in the most parsimonious way the link between pre-surgical tumor size and dynamics and 

post-surgical development of the metastases? 
• How to quantify metastatic aggressiveness (refine the M in TNM) and associated inter-individual 

variability?
• How to personalize adjuvant chemotherapy in order to limit toxicities for the low-risk patients and 

decrease the risk of metastatic relapse for high-risk patients?
• What is the quantitative impact of primary tumor resection on the future development of metastases? 
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CLINICAL DATA

2648 breast cancer patients screened for 
20 years after primary tumor resection (no 
adjuvant therapy) 
Koscielny et al., Br J Cancer, 1984
 
Cancer inception time can be inferred from 
PT volume V1 at diagnosis time T1 
(Gompertz growth).
Lognormal distribution of metastatic 
parameter μ for inter-individual variability 
(2 degrees of freedom) 
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PERSONALIZED SIMULATIONS FOR DIAGNOSIS AND PROGNOSIS

for a primary tumor of 4.32 cm
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• Population of metastases represented by a density 

ρ(t,v) [size-1] structured in size v 

• Secondary tumors grow in size with rate g(v)

 g(v)



Model coefficients
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• 4 growth parameters 

• 2 PT growth parameters αp and βp 

• 2 mets growth parameters α and β 

• 2 metastatic dissemination 
parameters 

• γ = fractal dimension of the metastatic 

susceptible cells (MSC)  

•  µ = per day probability for an MSC to 

establish a successful met

Since the viable tumor mass, mv, is the product of the total
number of viable cells and the average mass of a cell, mc, we have
mv~Nvmc leading to

BT~(
Bc

mc
)mvz(

Ec

mc
)
dmv

dt
ð5Þ

This first-order differential equation, representing conservation of
energy, explicitly links properties of tumor cells (Bc, Ec, and mc)
with properties of the whole tumor (BT and mv). Consequently, it
provides a simple, but powerful, way to integrate important
features and results from different areas of cancer research.
Solving this equation to determine tumor growth requires
knowledge of how tumor metabolic rate, BT , depends on its
viable mass, mv, to which we now turn.

Model for tumor vascular system and the prediction of
metabolic rate. Tumor metabolic rate, BT , is proportional to
the sum of the rates of cellular fermentation and aerobic
respiration. For avascular tumors, BT depends on the diffusion
rate of nutrients and oxygen from the surrounding environment
[18]. For vascular tumors, BT is proportional to the total blood
volume flow rate to the tumor, _QQT , consistent with observations
that glucose and oxygen consumption rates vary linearly with
blood flow rate [19]. The dependence of _QQT on mv and host mass,
M, is determined by the structure, dynamics and interaction of the
tumor and host vasculatures. Here, we develop a complete
analytical model of tumor vascular networks applicable
throughout different phases of development by deriving the
allometric scaling of tumor rates and times with host body size
and capillary density. Although the importance of the vascular
interface between the tumor and the host has been previously
recognized, our work is a novel attempt to mechanistically model
its role in tumor growth [10–12,20].

Mounting evidence suggests that some tumor vascular networks
exhibit fractal-like properties similar to those of the circulatory
system [21–23]. To analyze tumor vasculature, we borrow from an
idealized framework that has proven successful for quantitatively
understanding the circulatory system. This framework assumes
that in healthy tissue the vasculature is space-filling, minimizes
energy loss and has invariant terminal units (capillaries) [1]. We
compare these optimal networks with measures of tumor
vasculature, while retaining the assumption of invariant capillaries.

To facilitate comparisons between healthy and tumor vascula-
ture, we introduce scaling ratios for radii and lengths of vessels
across levels, k, of the network. We treat all branches at the same
level, k, as having similar properties and assume a constant
branching ratio, n–the effective number of daughter vessels for
each mother vessel [1]. Following West et al 1997 and Gevertz et
al 2006, we model blood vessels as cylinders, similar to the Krogh
model [1,11]. The capillaries define the lowest level k~N while
the largest vessels feeding the tumor define k~0 (Fig. 1). We
introduce scale factors for the ratio of daughter to mother vessel
radii:

rkz1

rk
~n{a ð6Þ

and similarly for daughter to mother vessel lengths:

lkz1

lk
~n{b ð7Þ

The exponents, a and b, can be used as quantitative diagnostics for
comparison with healthy tissue, where theory predicts and data

support a~1=2 for large vessels and a~1=3 for small vessels (from
energy minimization) and b~1=3 for all vessels (from space filling)
[1]. Deviations from these values indicate the degree to which
optimization and space-filling are violated during tumor growth.

For healthy tissue, a and b are approximately independent of k,
indicating that the network has a fractal-like structure, as observed.
To determine if tumor vascular networks have similar geometric
structure, we observe that for vessel radii, rk

r0
~n{ka, where r0 is

the largest vessel in the hierarchy, and taking the log of both sides
and rearranging yields log rk~({a log n)kzlog r0, and similarly
for vessel lengths log lk~({b log n)kzlog l0, so plotting log rk

and log lk versus k should yield straight lines whose slopes are
{a log n and {b log n, respectively, if a and b are constant.
Figs. 2a, 2b show data from various tumors, indicating that tumor
vasculature does indeed exhibit approximately fractal behavior, in
agreement with other studies [22,24].

The metabolic rate of the tumor, determined by oxygen and
nutrient availability, depends on its capillary density, which is
controlled by the scaling factors a and b. In File S1 we derive the
relationship between the metabolic rate, tumor size and vascular
architecture:

BT~B0(M)mb
v ð8Þ

where b~1 if 2azbƒ1, but ~1=(2azb) otherwise, and B0(M)
is a normalization factor that depends on the host mass, M. For
healthy tissue, where capillary density is controlled by large-vessel

scaling, this gives b~3=4, in agreement with data (B!M3=4) for
large mammals [25]. For tumors too small to support significant
pulsatile flow, or whose host supply vessels are likewise too small,
theory predicts a&1=3. So, if their vasculature is space-filling,
b~1 and their metabolic rate scales linearly: BT~B0(M)mv [1].

As tumor vasculature becomes increasingly inefficient and/or
attaches to host supply vessels sufficiently large to deliver pulsatile

Figure 1. Schematic of tumor growth model. (a) Vascularized
tumor supplied by blood siphoned from host vasculature. White area
represents viable tissue, while grey represents necrotic core. (b)
Schematic of vascular network composed of tubes. (c) Topological
model of tumor and host network beginning with feeding vessel (k = 0)
and terminating at the capillary level (k = N).
doi:10.1371/journal.pone.0022973.g001
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Stochastic/discrete version of the model: 
•  Exponential distribution of the mets birth 

times with inhomogeneous intensity d(Vp(t)) 
• Number of metastases = Poisson process N (t)
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The model fits at the individual and population levels

Benzekry et al. (Ebos), Cancer Res, 2016
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inter-animal variability of metastatic 
potential (CV = 176%)
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• Slow dissemination 
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• Fast dissemination 

• Different PT/met growth rate 

• Metastatic dynamics driven by dissemination

Benzekry et al. (Ebos), Cancer Res, 2016



Predicted versus experimental survival

Experimental survival
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The model survival was defined as the time to reach a given lethal burden of 4 × 109 p/s, i.e. 



Modeling the effects of therapeutic agents in the peri-operative setting

Kidney cancer 
• neo-adjuvant Sunitinib 

• adjuvant immune-checkpoint inhibitor (nivolumab) 
• identify biomarkers/covariates predictive of response

Mastri, Nicolo et al. (Benzekry, Ebos), in preparation, 2018

Research Article

Neoadjuvant antiangiogenic therapy reveals
contrasts in primary and metastatic tumor efficacy
John M L Ebos1,*, Michalis Mastri1, Christina R Lee2, Amanda Tracz1, John M Hudson2, Kristopher

Attwood3, William R Cruz-Munoz2, Christopher Jedeszko2, Peter Burns2,4 & Robert S Kerbel2,4

Abstract

Thousands of cancer patients are currently in clinical trials evaluat-
ing antiangiogenic therapy in the neoadjuvant setting, which is the
treatment of localized primary tumors prior to surgical intervention.
The rationale is that shrinking a tumor will improve surgical
outcomes and minimize growth of occult micrometastatic disease—
thus delaying post-surgical recurrence and improving survival. But
approved VEGF pathway inhibitors have not been tested in clinically
relevant neoadjuvant models that compare pre- and post-surgical
treatment effects. Using mouse models of breast, kidney, and mela-
noma metastasis, we demonstrate that primary tumor responses to
neoadjuvant VEGFR TKI treatment do not consistently correlate with
improved post-surgical survival, with survival worsened in certain
settings. Similar negative effects did not extend to protein-based
VEGF pathway inhibitors and could be reversed with altered dose,
surgical timing, and treatment duration, or when VEGFR TKIs are
combined with metronomic ‘anti-metastatic’ chemotherapy regi-
mens. These studies represent the first attempt to recapitulate the
complex clinical parameters of neoadjuvant therapy in mice and
identify a novel tool to compare systemic antiangiogenic treatment
effects on localized and disseminated disease.

Keywords antibodies; neoadjuvant; surgery; tyrosine kinase inhibitors; VEGF

Subject Categories Cancer; Vascular Biology & Angiogenesis

DOI 10.15252/emmm.201403989 | Received 19 February 2014 | Revised 23

September 2014 | Accepted 25 September 2014

Introduction

Eight inhibitors that block the vascular endothelial growth factor

(VEGF) pathway have now been approved as first- or second-line

treatment in twelve different late-stage cancer types, thus validating

antiangiogenesis as a therapeutic modality in treating established

metastatic disease and late-stage glioblastoma (Jayson et al, 2012).

Stemming from these approvals, several hundred phase II and III

trials were initiated to evaluate VEGF pathway inhibitors in earlier

stage disease, that is, neoadjuvant (pre-surgical) and adjuvant (post-

surgical) treatment settings (Ebos & Kerbel, 2011). Such ‘periopera-

tive’ treatments are unique in that they typically have defined treat-

ment durations (unlike in late-stage or advanced disease, where

treatments are variable depending on response) and are guided by

the hypothesis that drug efficacy in advanced metastatic disease

would elicit equal or greater improvements in the earlier stages

(Tanvetyanon et al, 2005). These benefits—shown with radiation

and chemotherapy (Van Cutsem et al, 2009)—would theoretically

include control of localized primary cancers which, in turn, would

prevent occult micrometastatic disease and improve progression-free

survival (PFS) (Ebos & Kerbel, 2011). However, based on recent clini-

cal and preclinical observations, there is growing concern that VEGF

pathway inhibitors may not be effective in this setting (Ebos & Kerbel,

2011). First, there have been five failed phase III adjuvant trials with

VEGF pathway inhibitors, including four with the VEGF neutralizing

antibody bevacizumab (in combination with chemotherapy or an

anti-HER2 antibody) in colorectal carcinoma (CRC) (AVANT and

C-08) (de Gramont et al, 2012) and triple-negative and HER2+breast

carcinoma (BEATRICE and BETH, respectively) (Cameron et al,

2013), and one with the VEGF receptor tyrosine kinase inhibitor

(RTKI) sorafenib in hepatocellular carcinoma (HCC) (Bruix et al,

2014). Second, growing preclinical evidence suggests that unex-

pected collateral consequences of angiogenesis inhibition may limit

efficacy in preventing growth of micrometastatic lesions (Mountzios

et al, 2014). Indeed, we and others have demonstrated that VEGF

pathway inhibitors can elicit both tumor- and host-mediated reac-

tions to therapy that can offset (reduce) benefits, or even facilitate,

early-stage metastatic disease in certain instances (Ebos et al, 2009;

Paez-Ribes et al, 2009). Though these latter results have thus far not

been confirmed clinically in patients with advanced metastatic

disease when therapy is removed (Miles et al, 2010; Blagoev et al,

2013), they underscore a gap in our current understanding of how

antiangiogenic therapy may work in different disease stages. They

also raise questions about the translational value of preclinical stud-

ies in predicting clinical outcomes. This is of immediate concern as

few preclinical studies have tested VEGF pathway inhibitors in
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Outline

3. Metastasis 

3.1 Modeling spontaneous metastasis following surgery : an in vivo-in silico 

approach  

3.2 Challenging the classical view of metastasis initiation and growth 

3.3 Clinical applications 



Kidney animal model of metastatic development 

Collaboration with the LAMC (Inserm) and the RMSB (CNRS), Bordeaux, Fr

Biological question 

Is the « standard » view of metastatic initiation and growth – that secondary lesions once established grow without 
interactions with each other or with the primary tumor – quantitatively valid for description of the dynamics of the number 

and size of metastases?

E. Baratchart’s PhD



Quantitative analysis: metastatic growth rate 

Quantitative analysis: metastatic growth rate

• From one cell to macrometastatic volumes (0.5� 2.5 mm3) in 4 days
• Gives a doubling time between 6 and 8 hours (in vitro doubling time

of the RENCA cell line: 25h)) too fast!

• From one cell to macrometastatic volumes (0.5 − 2.5 mm3) in 4 days  
• Gives a doubling time between 6 and 8 hours (in vitro doubling time of the 

RENCA cell line: 25h)⇒ too fast! 



Metastatic burden fit

Metastatic burden fit

Data PT
Median model PT
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Median model Met
Prct model met
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Baratchart et al. (Benzekry), PloS Comp Biol, 2015



Size distribution: theory vs data
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More but smaller metastases in the theory than in the data! 

Baratchart et al. (Benzekry), PloS Comp Biol, 2015

Possible hypotheses:  
• non trivial mechanical interactions between metastatic tumors 

(tumors merging) 

Perspectives

Perspectives

• Hypothèse d’attraction : Injection orthotopique de cellules RENCA
marquées en rouge (m-cherry), puis (15 jours après), injection de
cellules RENCA marquées en vert (GFP) en intraveineuse dans la
veine de la queue pour observer si les cellules injectées par la queue
forment des foyers indépendant ou si elles rejoignent des foyers déjà
existants. Liens avec le self-seeding (Kim, Norton, et al Cell 2009)?
Liens avec les aggrégats de cellules tumorales circulantes (Aceto et
al, Cell 2014)?

• Inhibition de contact : expériences au Ki67

• Simulations 3D

Perspectives

Perspectives

• Hypothèse d’attraction : Injection orthotopique de cellules RENCA
marquées en rouge (m-cherry), puis (15 jours après), injection de
cellules RENCA marquées en vert (GFP) en intraveineuse dans la
veine de la queue pour observer si les cellules injectées par la queue
forment des foyers indépendant ou si elles rejoignent des foyers déjà
existants. Liens avec le self-seeding (Kim, Norton, et al Cell 2009)?
Liens avec les aggrégats de cellules tumorales circulantes (Aceto et
al, Cell 2014)?

• Inhibition de contact : expériences au Ki67

• Simulations 3D

L. Cooley, W. Souleyreau, A. Bikfalvi LAMC, Bordeaux
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Figure 3: Time course of the macro-metastases size distribution: naive model versus observations.
Top row: Simulation of the mathematical formalism of the naive theory (i.e. dissemination and
independent growth of the resulting tumor foci), using the parameter values inferred from the total
metastatic burden data (total GFP signal in the lungs). Only tumors larger than the visible threshold
at MRI (0.05 mm3) were plotted. Bottom row: Observations of macro-metastases numbers and sizes
in one mouse on MRI data.

Day 19 Day 21 Day 24 Day 26

Figure 4: From left to right: Sagittal slide of the lungs from Day 19 to Day 26 of the same mouse:
Two tumors are growing close to each other and they merge between Day 21 and 24

2

• interactions between the metastatic tumors and the circulating tumor 
cells (cells attraction)



A mathematical model of spatial tumor growth
Mathematical model of spatial tumor growth E. Baratchart, PhD

Variables

•
P the proliferative tissue density

•
S the healthy tissue density

•
v the velocity of the passive motion

due to proliferation

• ⇧ the exerted pressure by the

proliferative tissue

Modeling hypotheses

•
Passive movement due to

proliferation

•
Major assumption: increase of
pressure slows down proliferation

Styglianopoulos, PNAS, 2012; Montel et al, New J

Phys, 2012

Model

@P(t, x)

@t
+r .(v(t, x)P(t, x)) = �(⇧)P(t, x)

@S(t, x)

@t
+r .(v(t, x)S(t, x)) = 0

Saturation hypothesis:

P + S = 1 ) r.v = �P

Darcy Law :

v = �kr⇧

Pressure mediated growth law :

�(⇧) = �0 exp

✓
�

⇧

⇧0

◆

Parameters
• �0 the maximal proliferation rate

• ⇧0 A characteristic pressure of

decreasing



Day 19 Day 26

Baratchart et al. (Benzekry), PloS Comp Biol, 2015



Outline

3. Metastasis 

3.1 Modeling spontaneous metastasis following surgery : an in vivo-in silico 

approach  

3.2 Challenging the classical view of metastasis initiation and growth 

3.3 Clinical applications 



• 20 year follow-up of 2648 patients   Koscielny et al., 

Br J Cancer, 1984 

• Assumptions 

• (lognormal) distribution of µ for inter-

individual variability 

• Doubling time from median values of the 

literature (7 months) Coumans et al., BMC 

Cancer 2013 

• Maximal reachable size = 1012 cells ≃ 1 kg 

Klein, Nat Rev Cancer, 2009 

•  Probability of developing a met = probability of 

having one at diagnosis 

Metastatic relapse probability in a breast cancer clinical 
dataset

Table 1: Descriptive power of the mathematical model: clinical data of metastatic relapse probability

Diameter of
PT (cm)

Prop. of
relapse
(Data)

Prop. of
relapse
(Model)

1  D  2.5 27.1 27.3

2.5 < D  3.5 42.0 43.1

3.5 < D  4.5 56.7 56.6

4.5 < D  5.5 66.5 65.6

5.5 < D  6.5 72.8 74.0

6.5 < D  7.5 83.8 80.1

7.5 < D  8.5 81.3 84.5

Table 2: Parameters inferred from the model

Data Location Par. Unit Estimate (CV) 95 % CI

In vitro � day�1 0.837 (-) (0.795 - 0.879)

Preclinical

PT

Vinj mm3 1 (-) -
aP day�1 0.605 (10.5) (0.561 - 0.651)
bP day�1 0.0784 (13.1) (0.0709 - 0.0867)

Met

V
0

p/s 10 (-) -
a day�1 1.52 (10.2) -
b day�1 0.0817 (18.9) (0.0731 - 0.0914)
m day�1 0.00297 (4379) (0.000811 - 0.0109)
� - 1 (-) -

Clinical

PT

V
0

cell 1 (-)
aP day�1 0.013 (-)
bP day�1 4.71⇥ 10�4 (-)

Met

V
0

cell 1 (-)
a day�1 0.013 (-)
b day�1 4.71⇥ 10�4 (-)
m day�1cell�� 1.03⇥ 10�7 (452)
� - 0.448 (-)

Clinical data

20 year follow-up of 2648 breast

cancer patients
Koscielny, Tubiana et al., Br J Cancer,
1984

Diameter of
PT (cm)

Prop. of
relapse
(Data)

Prop. of
relapse
(Model)

1 � 2.5 27.1 25.5
2.5 � 3.5 42.0 42.3
3.5 � 4.5 56.7 56.3
4.5 � 5.5 66.5 65.9
5.5 � 6.5 72.8 74.3
6.5 � 7.5 83.8 80.8
7.5 � 8.5 81.3 85.7

p = 0.023
Pearson’s �2 test for goodness-of-fit

•
Gompertz growth of PT, doubling
time at 1 gram = 7 months and
carrying capacity = 1012 cells (1
kg)

• Recover cancer inception time -T1
from PT volume at diagnosis

• Lognormal distribution of µ for
inter-individual variability

• Probability of metastatic relapse
= probability of having one at
diagnosis

P (Mets) = P
✓
µ

Z
T1

0
V

p

(t) > 1
◆

µ
median

= 7 ⇥ 10�12cell�1 · day�1Benzekry et al. (Ebos), Cancer Res, 2016



Diagnosis personalization
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Benzekry et al. (Ebos), Cancer Res, 2016

Breast cancer patient with primary tumor of 4.32 cm

Nothing visible



Toward taking into account inter-individual variability  

• 10 virtual patients with breast cancer detected at stage T1N0M0. Size of the tumor 

at detection: 1 gram.  

• Chemotherapy : 6 cycles of 21 days (75mg of DTX and 100mg d’EPI) Viens & al., Am. J. 

Clin. Onc. 2001  

• Number of visible metastases (> 108 cel.) 5 years after the end of the treatment 

Adapt the number of cycles to each patient 

Chemotherapy personalization

Patient µ # metastases Patient µ # metastases
n¶1 1.7 ◊ 10≠8 0 n¶6 7.0 ◊ 10≠8 0
n¶2 1.9 ◊ 10≠8 0 n¶7 1.3 ◊ 10≠7 1
n¶3 2.7 ◊ 10≠8 0 n¶8 2.7 ◊ 10≠7 2
n¶4 5.0 ◊ 10≠8 0 n¶9 4.0 ◊ 10≠7 3
n¶5 6.1 ◊ 10≠8 0 n¶10 6.1 ◊ 10≠7 4

µ Protocole de Viens Optimized protocol
6 cycles 9 cycles 12 cycles 9 cycles 13 cycles 18 cycles
126 days 189 days 252 days 126 days 182 days 252 days

1.3 ◊ 10≠7 1 0 ı 0 ı ı
2.7 ◊ 10≠7 2 1 0 2 0 ı
4.0 ◊ 10≠7 3 2 1 3 1 0
6.1 ◊ 10≠7 5 4 3 4 3 1

2



Impact of PT size at surgery on survival
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Data of a NSCLC patient with brain mets
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Parameters estimation
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Figure 1 – Comparison of the pre-detection periods between the exponential and Gom-
pertz models. Doubling time at detection is assumed to be 169 days in both cases
[Detterbeck and Gibson, 2008]. For the Gompertz model an additional assumption is made
of a maximum size of 1012 cells [Mitsudomi et al., 1996, Klein, 2009]. The red horizontal line is
the PT size at which detection occurred and the vertical dashed line is the time of diagnosis.
Pre-detection times are estimated 16 years and 4.5 years for the exponential and Gompertz
models, respectively.

The PT growth parameters were determined from the histologic type, assuming a doubling
time of 169 days for an adenocarcinoma [Detterbeck and Gibson, 2008] and 111 days for an
undi�erentiated carcinoma [Mizuno et al., 1984]. These values are median values resulting from
meta-analyses of empirical studies (see appendix). However, large variability was observed both
across the studies and within them. Additional information on the PT kinetics would therefore
be useful for patient-specific predictions.

2 Description and prediction of cerebral metastases apparition
and growth

2.1 Data and statement of the problem

We assume that we dispose of:

1. the PT size at the time of detection T1

4

Primary tumor growth pre-diagnosis: αp, βp

• Doubling time from histological type Detterbeck 
and Gibson, J Thorac Oncol, 2008 

• Maximal size = 1012 cells 
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Figure 0.0.11: Result of the basic simulation with all the parameters (↵0, �, µ, �) free. (Top left) the

cumulative distribution function at the time points of the clinical examinations; (top right) the predicted

total number of the visible metastases over time; (bottom) actual (grey) and predicted (black) metastases

number and their relative sizes at the last time point.
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The model could describe the data
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Figure 1: Observed mets growth and the theoretical one with pre-calibrated growth pa-
rameters and with parameters from our best fit.

smaller. Thus, visually, fit with parameters from the best fit is better, but quantitatively,
the worsening of the fit for the biggest met increases RSS value almost 6-fold.

At fig. 3-4 theoretical sized for all the mets are plotted.

Conclusion

Performing fit of mets dissemination parameters we used fixed pre-calibrated values on
mets growth parameters. This estimation was based only on the sizes of all mets with
time. Pre-calibrated parameters show quite good agreement with data (fig. 1 left). At
the same time, when we let both dissemination and growth parameters free, we obtained
much better fit of the cumulative distribution function, but we also got di↵erent values
of ↵0 and �. Thus, we plotted theoretical growth of all mets with the corresponding
growth parameters (fig. 1 right). After visual comparison of two results we can conclude
that in general, growth law with parameter values taken from the “best fit” matches data
quite good and sometimes (quantitatively in cases of ten mets) better than law with pre-
calibrated values. Nevertheless, the value of RSS for the growth law with parameters from
the “best fit” is almost 6-fold higher. Thus, improvement of the fit for the smaller mets is
negligible in comparison to the worsening of the fit for the biggest met.
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Figure 2. Kaplan–Meier Analysis of the Probability That Patients Would Remain Free of Distant Metastases and the Probability of
Overall Survival among All Patients (Panels A, and B, Respectively), Patients with Lymph-Node–Negative Disease (Panels C and D
[Facing Page], Respectively), and Patients with Lymph-Node–Positive Disease (Panels E and F, Respectively), According to Whether
They Had a Good-Prognosis or a Poor-Prognosis Signature.
The P values were calculated with use of the log-rank test.
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Figure 2. Kaplan–Meier Analysis of the Probability That Patients Would Remain Free of Distant Metastases and the Probability of
Overall Survival among All Patients (Panels A, and B, Respectively), Patients with Lymph-Node–Negative Disease (Panels C and D
[Facing Page], Respectively), and Patients with Lymph-Node–Positive Disease (Panels E and F, Respectively), According to Whether
They Had a Good-Prognosis or a Poor-Prognosis Signature.
The P values were calculated with use of the log-rank test.
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Medical imaging is one of the major factors that have
informed medical science and treatment. By assessing
the characteristics of human tissue noninvasively,

imaging is often used in clinical practice for oncologic diagnosis
and treatment guidance1–3. A key goal of imaging is ‘personalized
medicine’, where treatment is increasingly tailored on the basis of
specific characteristics of the patient and their disease4.

Much of the discussion of personalized medicine has focused
on molecular characterization using genomic and proteomic
technologies. However, as tumours are spatially and temporally
heterogeneous, these techniques are limited. They require
biopsies or invasive surgeries to extract and analyse what are
generally small portions of tumour tissue, which do not allow for
a complete characterization of the tumour. Imaging has great
potential to guide therapy because it can provide a more
comprehensive view of the entire tumour and it can be used on
an ongoing basis to monitor the development and progression of
the disease or its response to therapy. Further, imaging is
noninvasive and is already often repeated during treatment in
routine practice, on the contrary of genomics or proteomics,
which are still challenging to implement into clinical routine.

The most widely used imaging modality in oncology is X-ray
computed tomography (CT), which assesses tissue density.
Indeed, CT images of lung cancer tumours exhibit strong
contrast reflecting differences in the intensity of a tumour on
the image, intratumour texture and tumour shape (Fig. 1a).

However, in clinical practice, tumour response to therapy is only
measured using one- or two-dimensional descriptors of tumour
size (RECIST and WHO, respectively)5. Although a change in
tumour size can indicate response to therapy, it often does not
predict overall or progression free survival6,7. Although some
investigations have characterized the appearance of a tumour
on CT images, these characteristics are typically described
subjectively and qualitatively (‘moderate heterogeneity’, ‘highly
spiculated’, ‘large necrotic core’). However, recent advances in
image acquisition, standardization and image analysis allow for
objective and precise quantitative imaging descriptors that could
potentially be used as noninvasive prognostic or predictive
biomarkers.

Radiomics is an emerging field that converts imaging data into
a high dimensional mineable feature space using a large number
of automatically extracted data-characterization algorithms8,9.
We hypothesize that these imaging features capture distinct
phenotypic differences of tumours and may have prognostic
power and thus clinical significance across different diseases. Here
we assess the clinical relevance of 440 radiomic features, many of
which currently have no known clinical significance, in seven
independent cohorts consisting of 1,019 lung cancer and head-
and-neck cancer patients. Two data sets are used to assess
the stability of the features, four data sets to assess the prognostic
value of radiomic features on lung cancer patients and
head-and-neck cancer patients, and one data set for association

Tumour intensity

Tumour shape

Tumour texture

Wavelet

x

Radiomic features

a b

A A

A

B

B
B

Clinical data

Gene expression

II) Feature extractionI) CT imaging III) Analysis

Figure 1 | Extracting radiomics data from images. (a) Tumours are different. Example computed tomography (CT) images of lung cancer patients. CT
images with tumour contours left, three-dimensional visualizations right. Please note strong phenotypic differences that can be captured with routine CT
imaging, such as intratumour heterogeneity and tumour shape. (b) Strategy for extracting radiomics data from images. (I) Experienced physicians
contour the tumour areas on all CT slices. (II) Features are extracted from within the defined tumour contours on the CT images, quantifying tumour
intensity, shape, texture and wavelet texture. (III) For the analysis the radiomics features are compared with clinical data and gene-expression data.
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Current effort: towards personalized predictions from mechanistic modeling
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