

Computational modeling in medicine Part I: Introduction to mathematical oncology

S. Benzekry

Cours de formation doctorale Université de Bordeaux March 6, 2018

Mathematical medicine?

- First use of a mathematical model in medicine in 1760 by D. Bernoulli
- Smallpox: about 10% of death at that time (300–500 million deaths in the 20th century)

Is smallpox inoculation at small dose (vaccination) worthwhile given the risk of complications?

 \Rightarrow Life expectancy of 29 years (inoculation) VS 26 years (no inoculation)

 Smallpox has been eradicated since 1980, in part thanks to a worldwide vaccination campaign

TABLE I.

AGES par années,	Survivans felon M. Halley.	N'ayant pas eu la pet. vérole.	Ayant eu Ia pet. vérol.	Prenant Ja pet. vérole pendant ch. année.	M O R T S de la pet. vérole pendant chaq. ann-	S O M M E des morts de la pet. vérole.	M O R T s par d'autre maladies pend. chao année.
0	1 300	1300	0	C HOME WE HAVE T	-		
I	1000	896	104	137	17,1	17,1	283
2	855	685	170	22	12,4	29,5	133
3	798	571	227	78	9.7	39,2	47
4	760	485.	275	66	8,3	47,5	30
5	732	416	316	56	7,0	54.5	21
6	710	359	351	48	6,0	60,5	16
7	692	311	381	42	5,2	65.7	12,8
8	680	272	408	36	4.5	70,2	7,5
9	670	2 37	433	32	4,0	74,2	6
10	661	208	453	2.8	3.5	77.7	5,5
II	653	182	47 I	24,4	3,0	80,7	5
I 2	646	160	486	21,4	2,7	83,4	4,3
13	640	140	500	18,7	2,3	85,7	3.7
14	634	123	511	16,6	2,1	87,8	3.9
τ5	628	108	520	14,4	г,8	89,6	4,2
16	622	94	528	12,6	1,6	91,2	4,4
17	616	83	533	11,0	I,4	92,6	4,6
18	610	72	538	9.7	1,2	93,8	4,8
19	604	63	541	8,4	1,0	94,8	5
20	598	56	542	7.4	0,9	25.7	5,1
2 I	592	48,5	543	6,5	0,8	96,5	5,2
22	586	42,5	543	5,6	0,7	97,2	5.3
23	579	37	542	5,0	0,6	97,8	6,4
24	572	32.4	\$40	4.4	0,5	98.3	6.5

Cancer: a major public health concern

- Second leading cause of death worldwide (1 in 6 deaths, 8.8 million deaths in 2015)
- First cause of death in France (> 1 in 4 deaths) InVS and INCa, 2011
- Cumulative risks of **developing** a cancer: 30.9% in males and 23.3% in females
- Cumulative risks of **death** by cancer: 14.3% and 9%
- Most prevalent cancer types: breast in women, prostate in men
- Largest number of deaths: lung cancer
- One third of deaths from cancer are due to 5 leading behavioral and dietary risks: tobacco use (22%), high body mass index, low fruit and vegetable intake, lack of physical activity and alcohol use

Epidemiologial trends

Can mathematical models be of help in oncology?

• Novel measurement methods (especially from molecular biology and imaging) lead to accumulation of large amounts of biological and clinical data

Biological challenges

- Understand tumor growth
- General theories of systemic dynamics of cancer (metastasis, tumor-tumor interactions, cancerimmune dynamics,...)

- **Clinical challenges**
- Predict tumor growth
- Predict metastasis
- Predict resistance
- Optimize and individualize the therapy
- ⇒ Personalized medicine

⇒ Computational biology

Mathematical oncology?

Evolution Driven by Selective Pressure from the Microenvironment

Alexander R.A. Anderson,^{1,*} Alissa M. Weaver,⁴ Peter T. Cummings,^{2,3} and Vito Quaranta^{4,*}

Outline

1. Tumor growth

2. Therapeutics

3. Metastases

1 Tumor growth

Outline

1. Tumor growth

1.1. Introduction

1.2. Tumor growth laws

- 1.3. Angiogenesis and the Hahnfeldt model
- 1.4. Tumor-tumor interactions
- 1.5. Prediction
- 1.6. Meningioma and heterogeneity
- 1.7. Spatial models

What is a cancer?

- Tumor = malignant **neoplasm**. neo = new, plasma = formation
- Usually assumed that it departs from a cell undergoing several genetic and epigenetic changes leading to abnormal proliferation

Hallmarks of cancer

Hanahan and Weinberg, Cell, 2000

Hanahan and Weinberg, Cell, 2011

Microenvironment

Hanahan and Weinberg, Cell, 2011

A kidney tumor observed by Hematoxylin and Eosin staining

We will focus here on carcinomas: solid cancers from epithelial origin

Quantification of Tumor Growth

• In vitro

•

٠

- 2D proliferation assays
- 3D Tumor spheroids. Limited maximal size (mm)

In vivo animal models

- Subcutaneous/orthotopic implant
- Iso/xenograft (requires immune-deficient mice)
- · Genetically engineered mice
- Imaging techniques (gives human data)
 - Mammographies
 - Computed tomography (CT)
 - Magnetic resonance imaging (MRI)
 - Functional imaging (PET)

Background on quantitative analysis of tumor growth curves

- Study of biological growth processes has a long history
- Started in the 1950's for human tumor growth dynamics *Collins et al., Am J Roentgenol Radium Ther Nucl Med, 1956*
- One general observation is that the relative growth rate decreases in time Laird, Br J Cancer, 1965, Steel, Br J Cancer, 1966, Spratt, Cancer, 1993
- The most widely used model is the Gompertz model, but there is a wide array of empiric, ODE-based, growth models
- For experimental tumor growth, first appears in Casey, Am J Cancer, 1934
- Applicability for tumor growth generally confirmed on large animal data sets *Laird, Br J Cancer, 1964,1965* and human breast cancer data *Norton, Cancer Res, 1988*

Fit methodology: likelihood maximization

Tumor growth

What are **minimal** biological processes able to recover the **kinetics** of (experimental) tumor growth?

Benzekry et al., PloS Comp Biol, 2014

Goodness of fit metrics

Akaike Information Criterion Sum of Squared Errors $SSE^{i} = \sum_{j=1}^{n^{i}} \left(\frac{V_{j}^{i} - V(t_{j}^{i}, \hat{\theta}^{i})}{\hat{\sigma}_{j}^{i}} \right)^{2}$ $AIC^i = -2l(\hat{\theta}^i) + 2p$ number of parameters Model SSE AIC RMSE $\mathbf{R2}$ p > 0.05 #Power law 0.164(0.0158 - 0.646)[1] - 18.4(-43.2 - 1.63)[1] - 0.415(0.145 - 0.899)[1] - 0.97(0.801 - 0.998)[1] - 0.97(0.801 - 0.99100 2Gompertz 0.176(0.019 - 0.613)[2]-16.9(-48.2 - 1.1)[2]0.433(0.156 - 0.875)[2]0.971(0.828 - 0.997)[2]100 2Logistic 0.404(0.0869 - 0.85)[3]-5.41(-18.4 - 3.88)[3]0.665(0.331 - 1)[3]0.908(0.712 - 0.989)[3]100 2Exponential 1.9(0.31 - 3.56)[4]10.7(-5.38 - 23.1)[4]1.4(0.595 - 1.95)[4]0.69(0.454 - 0.944)[4]151

Root Mean Squared Errors

R²

$$RMSE^{i} = \sqrt{\frac{1}{n-p}SSE^{i}} \qquad \qquad R^{2,j} = 1 - \frac{\sum_{j} \left(V_{j}^{i} - V(t_{j}^{i};\hat{\theta}^{i})\right)^{2}}{\sum_{j} \left(V_{j}^{i} - \overline{V^{i}}\right)^{2}}$$

Parameter values and identifiability

Model	Par.	Unit	Median value (CV)	NSE (%) (CV)
		$2(1 \circ 1) = 1$		
Power law	α	$\mathrm{mm}^{3(1-\gamma)}\cdot\mathrm{day}^{-1}$	0.886 (30.8) 0.788 (7.56)	8.17(52.5)
	γ	-	0.788 (7.50)	2.28 (38.0)
	0.0	dow-1	1.69 (92.5)	6 11 (92.0)
Gompertz	α_0	day	1.06(23.3) 0.0703(28)	0.11 (02.9) 8 25 (02.0)
	ρ	uay	0.0703 (28)	0.55 (92.9)
	a	dav^{-1}	0 474 (13 3)	2,93,(23,3)
Logistic	$\overset{a}{K}$	mm^3	1.92e+03(36.7)	15.8(28.7)
			1.020+00 (00.1)	10.0 (20.1)
Exponential	a	day^{-1}	0.356(12.9)	2.53(19.4)
Generalized log	gistic	$\begin{array}{ccc} a & [day^{-1}] \\ K & [mm^3] \\ \alpha & - \end{array}$	$\begin{array}{c} 2555 \ (148) \\ 4378 \ (307) \\ 0.0001413 \ (199) \end{array}$	$\begin{array}{c} 2.36\mathrm{e}{+05}\;(137)\\ 165\;(220)\\ 2.36\mathrm{e}{+05}\;(137)\end{array}$

NSE = Normalized Standard Error

practical identifiability

$$\hat{ heta} \sim \mathcal{N}\left(heta^*, \hat{\sigma}^2\left(J \cdot J^T\right)^{-1}
ight)$$

$$se\left(\hat{\theta}^{k}\right) = \sqrt{\hat{\sigma}^{2}\left(J\cdot J^{T}\right)_{k,k}}$$

Outline

1. Tumor growth

- 1.1. Introduction
- 1.2. Tumor growth laws

1.3. Angiogenesis and the Hahnfeldt model

1.4. Tumor-tumor interactions

- 1.5. Prediction
- 1.6. Meningioma and heterogeneity
- 1.7. Spatial models

Angiogenesis

J. Folkman, Tumor angiogenesis: therapeutic implications, N Engl J Med, 1971

A model integrating angiogenesis

Dynamic carrying capacity

angiogenic factors

inhibition of angiogenesis

Biophysical derivation of the balance between pro and anti-

Allows integration of the action of anti-angiogenic drugs

Hahnfeldt et al. (Folkman), Cancer Res, 1999

Concomitant tumor resistance

- Inhibition of secondary growth by a primary mass
- Critical clinical implications in terms of post-surgery metastatic acceleration

Figure 2. The Presence of a Primary Tumor Is Associated with an Inhibition of Neovascularization and Growth of Its Metastases

O'Reilly, Folkman et al., Angiostatin: A Novel Angiogenesis Inhibitor That Mediates te Suppression of Metastases by a Lewis Lung Carcinoma, Cell 1994

Questions and experiment

Questions

- Quantitatively distinguish between qualitatively valid theories of tumortumor interactions
- Establish and validate a minimal model able to simulate tumor-tumor interactions

Experiment

- Injection s.c. of two tumors of 10⁶ LLC cells in C57/BL6 mice
- Two groups
 - Control: only one tumor
 - Group S: **simultaneous** injection of cells in two different sites

A mouse with two tumors

Something happens. One tumor has normal volume and the other is smaller

Control group (single tumors)

Double tumors

One tumor has normal growth and the other is suppressed

Individual growth kinetics

Small/Large in two-tumor bearing animals VS artificially paired small/large controls

Single-tumor growth models

Exponential V0

$$\begin{cases} \frac{dV}{dt} = aV\\ V(t=0) = V_0 \end{cases}$$

Power law

$$\left\{ \begin{array}{l} \frac{dV}{dt} = aV^{\gamma} \\ V(t=0) = 1 \ mm^3 = 10^6 \ cells \end{array} \right.$$

Gompertz

 $\begin{cases} \frac{dV}{dt} = aV \ln\left(\frac{K}{V}\right) \\ V(t=0) = 1 \ mm^3 = 10^6 \ cells \end{cases}$

Large

0

Small

Two-tumors models

• Requirements:

- Symmetry: same parameters for tumor 1 and tumor 2
- Should resume to **single tumor growth** in the absence of the other tumor
- Main assumption for the difference between the two tumors: difference in **the initial take** ($V_{0,1}$ = 1, $V_{0,2}$ = 0.75)
- Difference in the growth kinetics should not result from difference in V_0
- Model selection (rejection) criteria: goodness-of-fit + parameter identifiability

Competition

$$\begin{cases} \frac{dV_1}{dt} = aV_1 \ln\left(\frac{K}{V_1 + V_2}\right), & V_1(t=0) = V_{0,1} \\ \frac{dV_2}{dt} = aV_2 \ln\left(\frac{K}{V_1 + V_2}\right), & V_2(t=0) = V_{0,2} \end{cases}$$

Angiogenesis inhibition

$$\begin{cases} \frac{dV_1}{dt} = aV_1 \ln\left(\frac{K_1}{V_1}\right), & V_1(t=0) = V_{0,1} \\ \frac{dK_1}{dt} = bV_1 - dV_1^{\frac{2}{3}}K_1 - eV_2 \mathbf{1}_{K_1 > K_0}, & K_1(t=0) = K_0 \\ \frac{dV_2}{dt} = aV_2 \ln\left(\frac{K_2}{V_2}\right), & V_2(t=0) = V_{0,2} \\ \frac{dK_2}{dt} = bV_2 - dV_2^{\frac{2}{3}}K_2 - eV_1 \mathbf{1}_{K_2 > K_0}, & K_2(t=0) = K_0 \end{cases}$$

Proliferation inhibition

$$\begin{cases} \frac{dP_1}{dt} = \alpha P_1 - (\beta P_1 + \gamma (P_1 + P_2)) \mathbf{1}_{P_1 > 0}, & P_1(t = 0) = V_{0,1} \\ \frac{dQ_1}{dt} = \beta P_1 + \gamma (P_1 + P_2), & Q_1(t = 0) = 0 \\ \frac{dP_2}{dt} = \alpha P_2 - (\beta P_2 + \gamma (P_1 + P_2)) \mathbf{1}_{P_2 > 0}, & P_2(t = 0) = V_{0,2} \\ \frac{dQ_2}{dt} = \beta P_2 + \gamma (P_1 + P_2), & Q_2(t = 0) = 0 \end{cases}$$

Benzekry et al., Cancer Res, 2017

The competition model does not fit

Benzekry et al., Cancer Res, 2017

The « inhibition of proliferation » model fitted best

Benzekry et al., Cancer Res, 2017

Summary

- Exponential (proliferation) and logistic (competition) models cannot explain tumor growth
- Gompertz (phenomenological) and power law (biologically-grounded) models fit very well
- Hahnfeldt model for integration of angiogenesis
- There are **systemic interactions** between tumors in the same organism
- Competition alone cannot explain the phenomenon
- Systemic inhibition of angiogenesis or proliferation are valid theories

Outline

1. Tumor growth

- 1.1. Introduction
- 1.2. Tumor growth laws
- 1.3. Angiogenesis and the Hahnfeldt model
- 1.4. Tumor-tumor interactions
- **1.5. Prediction**
- 1.6. Meningioma and heterogeneity
- 1.7. Spatial models

Population approach: nonlinear mixed effects

Usual fitting methods consider each time series independently

$$y_{i}^{j} = M(t_{i}^{j}, \theta^{j}) + \varepsilon_{i}^{j} \qquad \text{Individual } 1 \leq j \leq N$$

$$\stackrel{\mathsf{MLE}}{\longrightarrow} \quad \hat{\theta}^{j} = \underset{\theta}{\operatorname{argmin}} \sum_{\theta} \left(y_{i}^{j} - M(t_{i}^{j}, \theta) \right)^{2} \qquad \text{Time } t_{i}$$

 When only sparse data are available from subjects in the same population, one can fit the parameters of a population distribution and use all data all-in-once

$$y_i^j = M(t_i^j, \theta^j) + \varepsilon_i^j$$

$$\theta^1, \ldots, \theta^N \sim \mathcal{LN}(\theta_\mu, \theta_\omega), \quad \theta_\mu \in \mathbb{R}^p, \ \theta_\omega \in \mathbb{R}^{p \times p}$$

Lavielle, CRC press, 2014

• Reduces the number of parameters from *pxN* to *p*+*p*²

Population approach and its use for prediction

No a priori

Benzekry et al., PloS Comp Biol, 2014
Power law model: all animals

OK, OK₁ OK, OK, OK, OK, Not OK glob OKglob OK_{glob} OK_{glob} Not OK alob OK glob Volume (mm³) 200 (1000) (2000) Volume (mm³) 200 Volume (mm³) 200 Volume (mm³) Volume (mm³) njo₂ 500 Days Days Days Days Days Days Not OK, Not OK, OK, OK, 1000 Nolume (mm³) (cmm) employ 600 400 Not OK glob Not OK glob OK_{glob} Not OK glob Not OK alob Not OK glob 800 (mm) emnon 600 400 900 mg (mm³) Volume (mm³) 800 600 € 1000 /olum /olun Days Days Days Days Days Days Not OK, OK, Volume (mm³) Not OK glob OK_{glob} Not OK glob Not OK_{glob} Not OK_{alob} (1000 (mm) emnlon 500 (cmm) emulov Not OK alob Volume (mm³) (in 1000 800 (mm³) /olume (/olume Days Days Days Days Days Days 800 600 400 Not OK glob Volume (mm³) OKglob \ast Data * Data Fit Fit Prediction Prediction Days Days

No a priori

A priori

Prediction improvement for all models

Randomly assign (100 replicates) half of the animals to the **« learning** group » and the other half to the **« predict » group**

Concise history of the development of spatial models

 First spatial considerations in a quantitative mathematical analysis of tumor growth in *Mayneord*, *Cancer Res, 1932*

 \Rightarrow derives the **linear growth** of rat sarcoma's

radius the proliferative fraction is confined to a small rim

 Following J. Folkman's realization that avascular tumor growth is limited to a small size (mm) by the diffusion of nutrients, one of the first partial differential equation model of tumor growth was proposed by *Greenspan, Stud Appl Math, 1972*

 \Rightarrow tests hypotheses regarding the origin of a possible inhibitory factor (necrotic core or proliferative cells)

Concise history of the development of spatial models, ctd

- Lots of **theoretical models** developed in the 1980s 1990s *Adam, Byrne, Chaplain, Preziosi* : continuum mechanics based models viewing the tumor as a mixture
- Early 2000s: reaction-diffusion equations for the growth of gliomas (brain tumors) *Murray, Tracqui, Swanson*. Assumptions: proliferation + random motility ⇒ linear growth of the radius. Method to evaluate the invisible infiltrative part of the tumor

Early 2010s: use of clinical images to parameterize advection PDE models. *Saut, Colin*

٠

Spatial models of tumor growth and clinical images

P = proliferative cells, S = healthy tissue

$$\partial_t P + \nabla \cdot (\mathbf{v}P) = (\gamma_p - \gamma_d)P,$$

$$\partial_t S + \nabla \cdot (\mathbf{v}S) = 0.$$

P+S=1
$$\Rightarrow$$
 $\nabla \cdot \mathbf{v} = (\gamma_p - \gamma_d) P_d$

Closure hypothesis

$$\mathbf{v} = -k\nabla\Pi.$$

Therapies

A brief overview of anti-cancer therapies

A brief overview of anti-cancer therapies

• Anti-angiogenic therapy

PD-1

ANCER Pell

Where can mathematical models help?

Define the dose and scheduling of the drug administration

time

Personalize the treatment

One size does not fit all.

⇒ **adaptive** dosing strategies

Where does the Maximum Tolerated Dose (MTD) paradigm come from ?

Log-kill hypothesis

a given dose kills a given fraction of the tumor cell population

- Established on leukemic cell lines
- Focus: curability

"(...) it appears that high-level, short-term schedules offer considerably greater potential for obtaining "cures". This preference does not necessarily hold with regard to achieving maximum increase in life span of animals which die in spite of therapy"

The Norton-Simon hypothesis: tumor growth model

- Relative growth rate is not constant in time, it decelerates
- Challenges the exponential model ⇒ **Gompertz growth**

The Norton-Simon hypothesis

Second hypothesis: effect of the therapy is proportional to the proliferative

fraction only

$$\frac{dN}{dt} = ae^{-bt}N - eC(t)e^{-bt}N$$

- Suggested densification of adjuvant chemotherapy protocols in breast cancer
- Subsequently validated in phase III study

Citron et al., J Clin Oncol, 2003

still focuses on tumor eradication

Norton, Simon, Cancer Treat Rep, 1976

Tumor heterogeneity and re-sensitization

Minimizing Long-Term Tumor Burden: The Logic for Metronomic Chemotherapeutic Dosing and its Antiangiogenic Basis

J Theor Biol, 2003

Philip Hahnfeldt *†‡, Judah Folkman $\parallel \$ and Lynn Hlatky†‡

Tumor heterogeneity and re-sensitization

- In the context of tumor heterogeneity, long-term minimization may often be the more practical objective
- Metronomic scheduling is the best way to achieve it
- Lends theoretical support to the anti-angiogenic basis of metronomic therapy as endothelial cells because of higher ability to desensitize

A dedicated model for metronomic chemotherapy

Hypotheses:

- 1. Chemo has an **anti-angiogenic** effect by killing proliferative endothelial cells.
- 2. Cancerous cells develop **resistances** to the CT whereas endothelial cells don't.

3. At low dose, the killing action of the drug is stronger on the endothelial compartment than on the tumor one

+ PK/PD model for exposure of the drug given the concentrations

A dedicated model for metronomic chemotherapy

MTD schedule: 100 mg at day 0 of 21-days cycle Metronomic schedule: 10 mg/day every day without resting period

Docetaxel PK/PD parameters

Carrying capacity

Tumor cells

Benzekry, Barbolosi, Andre et al., MMNP, 2012

Modeling of toxicity and scheduling of vinorelbine in NSCLC

⇒ ongoing phase I trial

Barbolosi, André et al., Nat Rev Clin Oncol (2016)

Elharrar, Barbolosi, André et al. (2016)

Adaptive therapy

- Evolutionary viewpoint of resistance to therapy. Darwinian selection
- Complex dynamics are hard to control. Why, then, use fixed, rigid protocols of drugs, dose and timing?
- Gatenby suggests to rather adapt the protocol as the tumor evolves in response to therapy

A change of strategy in the war on cancer

Patients and politicians anxiously await and increasingly demand a 'cure' for cancer. But trying to control the disease may prove a better plan than striving to cure it, says **Robert A. Gatenby**.

Gatenby, Nature, 2009

Gatenby et al., Cancer Res, 2009

Primary tumor VS metastases

Primary tumor

CT/AA combination. What sequence?

Bevacizumab D0 Etoposide D8 versus Etoposide D0 Bevacizumab D8

⇒ The best sequence is different for the PT and the mets

Summary

- Although mathematics are a discipline far from medicine, theoretical models have often driven the paradigms underlying chemotherapy schedules
- Rational design of chemotherapy protocols...
- ...and sequences in combination therapies (CT/AA, radio-immuno therapy)

Benzekry, Pasquier, Andre et al., Semin Cancer Biol, 2015

Vascular normalization: a time window for improved pharmacokinetics?

- Bevacizumab = anti-VEGF monoclonal antibody ⇒ anti-angiogenic action (first approved in 2004)
- Only proved clinical efficacy when combined (concomitantly) with cytotoxics
- Possible explanation: transient normalization of the otherwise abnormal (leaky, tortuous) vascular architecture


```
Vakoc et al., Jain, 2009, Na
```


Inadequate

Jain, Nat Med, 2001

Therapeutic question

What is the **optimal time gap** between administration of bevacizumab and cytotoxic chemotherapy? How to capture **inter-individual variability** for designing **personalized therapies**?

Hypothesis: sequential use of bevacizumab associated with chemotherapy would achieve better efficacy and modeling support could help to define the optimal timewindow

Modeling

and

Simulation

Imbs et al. (Benzekry), CPT: Pharmacometrics Syst Pharmacol, 2017

Sequential administration Beva then Chemo improves response and survival

-71.2% tumor size at study conclusion (day 60)

⇒ Sequential use increases survival by 44%

Semi-mechanistic mathematical model

Simeoni et al., Rocchetti, Cancer Res, 2004 Benzekry et al., CRAS, 2012 + PK models for beva *A(t)* and CT *C(t)* concentrations Mollard et al., Benzekry, Oncotarget, 2017 Imbs et al., (Benzekry), CPT: Pharmacometrics Syst Pharmacol, 2018

3 Metastasis

Ínría

Clinical problems related to metastasis

Metastases are the main cause of death (>90%) from cancer Lambert and Weinberg, Cell, 2017

Breast

•

- 94% of cases are local or regional at diagnosis but 30% will relapse *Pollard*, *N Eng J Med*, 2016
- Estimate the amount of residual distant disease at diagnosis in order to personalize the adjuvant (chemo)-therapy
- Avoid unnecessary, heavy toxicities

• Lung

- 57% of cases are metastatic
- For a patient with one or little brain metastases, decide whether to use whole brain radiation therapy or just (stereotactic) surgery
- · Avoid cognitive impairment of the patient

Institut Bergonié, Bordeaux

The Sequential Process of Metastasis

Clinical presentation

20/01/2015

06/11/2015

Enhanced CT scan of the liver of a kidney cancer patient with multiple metastatic tumors + some of the metastases are **not visible** *F. Cornelis, CHU Bordeaux*

Outline

3. Metastasis

3.1 Modeling spontaneous metastasis following surgery : an in vivo-in silico approach

3.2 Challenging the classical view of metastasis initiation and growth

3.3 Clinical applications

Questions and data

Questions

- Minimal model of metastatic development.
 Dissemination law? Differences between mets and primary tumor growth?
- Quantify the inter-subject variability of metastatic development
- What is the impact of the primary tumor size at surgery on metastatic development and survival?

Data

- Clinically relevant ortho-surgical animal models
 of metastasis
- Longitudinal measurements of primary tumor size and total metastatic burden

Dr Ebos' lab, Roswell Park Cancer Institute

Model coefficients

4 growth parameters

- 2 PT growth parameters α_p and β_p
- 2 mets growth parameters *α* and *β*

- 2 metastatic dissemination parameters
 - *γ* = fractal dimension of the metastatic susceptible cells (MSC)
 - *µ* = per day probability for an MSC to
 establish a successful met

Stochastic/discrete version of the model:

- Exponential distribution of the mets birth times with inhomogeneous intensity $d(V_p(t))$
- Number of metastases = Poisson process $_{\mathcal{N}(t)}$

$$N(t) = \int_0^t d(V_p(s))ds = \mathbb{E}\left[\mathcal{N}(t)\right]$$

The model fits at the individual and population levels

Fit

Prediction

Nonlinear mixed-effects

- * Data primary tumor
- Median model primary tumor
- - 10th and 90th percentiles model primary tumor
- O Data metastatic burden
- ----Median model metastatic burden
- 10th and 90th percentiles model metastatic burden

⇒ model with same growth for PT and mets is the most parsimonious

 \Rightarrow good identifiability (all rse < 30%)

 \Rightarrow parameter μ is a critical coefficient of

inter-animal **variability** of metastatic potential (CV = 176%)

Breast model (human cells, immune-deprived)

- Slow dissemination
- Same PT/met growth rate
- Metastatic dynamics driven by growth

Kidney model

(murine cells, immune-competent)

Fast dissemination

٠

- Different PT/met growth rate
- Metastatic dynamics driven by dissemination

Benzekry et al. (Ebos), Cancer Res, 2016

Predicted versus experimental survival

The model survival was defined as the time to reach a given lethal burden of 4×10^9 p/s, i.e.

 $\inf\{t>0; M(t) > 4 \times 10^9\}$

Modeling the effects of therapeutic agents in the peri-operative setting

Kidney cancer

- neo-adjuvant Sunitinib
- adjuvant immune-checkpoint inhibitor (nivolumab)
- identify biomarkers/covariates predictive of response

Published online: October 31, 2014					
Research Article					

Neoadjuvant antiangiogenic therapy reveals contrasts in primary and metastatic tumor efficacy

John M L Ebos^{1,*}, Michalis Mastri¹, Christina R Lee², Amanda Tracz¹, John M Hudson², Kristopher Attwood³, William R Cruz-Munoz², Christopher Jedeszko², Peter Burns^{2,4} & Robert S Kerbel^{2,4}

Break VS no break

Mastri, Nicolo et al. (Benzekry, Ebos), in preparation, 2018

Outline

3. Metastasis

3.1 Modeling spontaneous metastasis following surgery : an in vivo-in silico approach

3.2 Challenging the classical view of metastasis initiation and growth

3.3 Clinical applications

Kidney animal model of metastatic development

Biological question

Is the « standard » view of metastatic initiation and growth – that secondary lesions once established grow without interactions with each other or with the primary tumor – quantitatively valid for description of the dynamics of the number and size of metastases?

first GFP+ tumor cells in the lung

vascularized macrometastases

Quantitative analysis: metastatic growth rate

- From one cell to macrometastatic volumes (0.5 2.5 mm³) in 4 days
- Gives a doubling time between 6 and 8 hours (in vitro doubling time of the RENCA cell line: 25h)⇒ too fast!

Par.	Unit	Median value	CV (%)	95% CI
α	day — 1	0.427	26	(0.329 - 0.558)
β	day — 1	0.0735	27.9	(0.0372 - 0.145)
μ	$cell^{-1} \cdot day^{-1}$	1.49 \times 10 ⁻⁵	553	$(0.277 - 8.00) \times 10^{-5}$

Baratchart et al. (Benzekry), PloS Comp Biol, 2015

Size distribution: theory VS data

L. Cooley, W. Souleyreau, A. Bikfalvi LAMC, Bordeaux

Possible hypotheses: 19 • non trivial mechanical interactions between Metastatic (tumors merging)^{Number} 4 3 Macro-burden (mm³) 1.58 0.452

 interactions between the metastatic tumors and the circulating tumor cells (cells attraction)

Baratchart et al. (Benzekry), PloS Comp Biol, 2015

A mathematical model of spatial tumor growth

Variables

- *P* the proliferative tissue density
- *S* the healthy tissue density
- *v* the velocity of the passive motion due to proliferation
- Π the exerted pressure by the proliferative tissue

Modeling hypotheses

- Passive movement due to proliferation
- Major assumption: increase of pressure slows down proliferation Styglianopoulos, PNAS, 2012; Montel et al, New J Phys, 2012

Model

$$\frac{\partial P(t,x)}{\partial t} + \nabla .(v(t,x)P(t,x)) = \gamma(\Pi)P(t,x)$$
$$\frac{\partial S(t,x)}{\partial t} + \nabla .(v(t,x)S(t,x)) = 0$$

Saturation hypothesis:

$$P + S = 1 \Rightarrow \nabla . v = \gamma P$$

Darcy Law :

 $v = -k \nabla \Pi$

Pressure mediated growth law :

$$\gamma(\Pi) = \gamma_0 \exp\left(-\frac{\Pi}{\Pi_0}\right)$$

Parameters

- γ_0 the maximal proliferation rate
- Π₀ A characteristic pressure of decreasing

Day 19

Day 26

Baratchart et al. (Benzekry), PloS Comp Biol, 2015

Outline

3. Metastasis

3.1 Modeling spontaneous metastasis following surgery : an in vivo-in silico approach

3.2 Challenging the classical view of metastasis initiation and growth

3.3 Clinical applications

Metastatic relapse probability in a breast cancer clinical dataset

Diameter of PT (cm)	Prop. of relapse (Data)	Prop. of relapse (Model)	
$1 \le D \le 2.5$	27.1	27.3	
$2.5 < D \le 3.5$	42.0	43.1	
$3.5 < D \le 4.5$	56.7	56.6	
$4.5 < D \le 5.5$	66.5	65.6	
$5.5 < D \le 6.5$	72.8	74.0	
$6.5 < D \le 7.5$	83.8	80.1	
$7.5 < D \le 8.5$	81.3	84.5	

- 20 year follow-up of 2648 patients *Koscielny et al., Br J Cancer, 1984*
- Assumptions
 - (lognormal) distribution of µ for interindividual variability
 - Doubling time from median values of the literature (7 months) *Coumans et al., BMC Cancer 2013*
 - Maximal reachable size = 10¹² cells ≃ 1 kg
 Klein, Nat Rev Cancer, 2009
- Probability of developing a met = probability of having one at diagnosis

$$\mathbb{P}(\mathsf{Mets}) = \mathbb{P}\left(\mu \int_0^{\tau_1} V_{\rho}(t) > 1\right)$$

Benzekry et al. (Ebos), Cancer Res, 2016

Diagnosis personalization

Breast cancer patient with primary tumor of 4.32 cm

Chemotherapy personalization

Toward taking into account inter-individual variability

- 10 virtual patients with breast cancer detected at stage T1N0M0. Size of the tumor at detection: 1 gram.
- Chemotherapy : 6 cycles of 21 days (75mg of DTX and 100mg d'EPI) Viens & al., Am. J.
 Clin. Onc. 2001
- Number of visible metastases (> 10⁸ cel.) 5 years after the end of the treatment

Adapt the number of cycles to each patient

μ	Protocole de Viens			Optimized protocol		
	6 cycles	9 cycles	12 cycles	9 cycles	13 cycles	18 cycles
	126 days	189 days	252 days	126 days	182 days	252 days
1.3×10^{-7}	1	0	*	0	*	*
2.7×10^{-7}	2	1	0	2	0	*
4.0×10^{-7}	3	2	1	3	1	0
6.1×10^{-7}	5	4	3	4	3	1

Impact of PT size at surgery on survival

Data of a NSCLC patient with brain mets

Lung CT

Brain CT scan

Parameters estimation

Primary tumor growth pre-diagnosis: α_p , β_p

- Doubling time from histological type *Detterbeck* ٠ and Gibson, J Thorac Oncol, 2008
- Maximal size = 10^{12} cells ٠

Metastatic growth

First approximation : same as PT: α , $\beta = \alpha_p$, β_p

Post-diagnosis: treatment + resis

Sum of two exponentials

The model could describe the data

t = -55 months _ 10 mm

Primary tumor (lung)

*

Metastases (brain)

t = -4.5 years

Current effort: towards personalized predictions from mechanistic modeling

Current effort: towards personalized predictions from mechanistic modeling

van't Veer et al., Nature, 2002

Thank you all for your attention !!

Want to do a PhD/postdoc? Join us! ⇒ sebastien.benzekry@inria.fr

Thats all Folks