

Introduction to modeling, simulation and data science in oncology 3. Introduction to Statistical Learning

S. Benzekry

Formation « Ecole doctorale Mathématiques et Informatique »

Ok Google: What is Al??

Definition: A computer system able to perform tasks that normally require human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages.

Oxford dictionary

- New « hype » since ~2011 mostly thanks to :
 - Computing power
 - Big data

Deep Learning

• Exists since decades

M I N D A QUARTERLY REVIEW or PSYCHOLOGY AND PHILOSOPHY ______

INTELLIGENCE By A. M. TURING

Turing, Mind, 1950

Enigma

Google DeepMind, Nature, 2016

©Information Age, ACS

Artificial Intelligence, Machine Learning and Deep Learning

Artificial Intelligence, Machine Learning and Deep Learning

Supervizec

patient

patient

patient

k-fold cross-validation

Test set			Learning set										
	1	2	3	4	5	6	7	8		Ν			
	1	2	3	4	5	6	7	8		Ν			
	1	2	3	4	5	6	7	8		Ν			
	1	2	3	4	5	6	7	8		Ν			

 V^2

 V^3

Artificial Intelligence, Machine Learning and Deep Learning

Supervized machine learning

a₁, **a**₂, ..., **a**₁₀₀₀

Statistical Modeling: The Two Cultures

Leo Breiman

Model validation. Measured by predictive accuracy. *Estimated culture population.* 2% of statisticians, many in other fields.

Statistical (Machine) Learning

 $Y = M(x) + \varepsilon$

• Goal = predict Y = find M

• *Y* quantitative \Rightarrow regression

• *Y* qualitative \Rightarrow classification

- Learning = use data
 - only *x* values \Rightarrow unsupervised learning
 - (x, y) examples \Rightarrow supervised learning

3.1 Classification

Confusion matrix

Data
$$\begin{pmatrix} x^1 \\ \vdots \\ x^N \end{pmatrix}$$
 \longrightarrow Predictions $\begin{pmatrix} \hat{y}^1 \\ \vdots \\ \hat{y}^N \end{pmatrix} = \begin{pmatrix} \hat{M}(x^1) \\ \vdots \\ \hat{M}(x^N) \end{pmatrix}$ vs reality $\begin{pmatrix} y^1 \\ \vdots \\ y^N \end{pmatrix}$

Actual

Accuracy =
$$\frac{TP+TN}{TP+TN+FP+TN}$$

Sensitivity =
$$SE = \mathbb{P}(+|1) = TPR = \frac{TP}{TP+FN}$$

 $\beta = \mathbb{P}(-|1) = FNR = 1 - SE = \text{proba of type II error}$

(classify as benign what is cancer)

Specificity = $SP = \mathbb{P}(-|0) = TNR = \frac{TN}{FP+TN}$

 $\alpha = \mathbb{P}(+|0) = FPR = 1 - SP = \text{proba of type I error}$

(classify as tumor what is benign)

Positive and negative predictive value

- Sensitivity and specificity are not sufficient to assess a model
- We are often more interested in P(1|+) (= positive predictive value, PPV) and P(0|−) (= negative predictive value, NPV)
- From Bayes

 $PPV = \mathbb{P}(1|+) = \frac{\mathbb{P}(+|1)\mathbb{P}(1)}{\mathbb{P}(+)}$

 $\mathbb{P}(+) = \mathbb{P}(+|0)\mathbb{P}(0) + \mathbb{P}(+|1)\mathbb{P}(1) = (1 - \mathbb{P}(-|0))(1 - \mathbb{P}(1)) + SE \cdot \mathbb{P}(1)$ $= (1 - SP) \cdot (1 - p) + SE \cdot p$

p prevalence

$$PPV = \frac{SE \cdot p}{(1 - SP) \cdot (1 - p) + SE \cdot p}$$

• Other metrics: F1 = harmonic mean of *PPV* (precision) and sensitivity (recall) = $2(PPV^{-1} + SE^{-1})^{-1}$

Example: Lung cancer and smoking status

- Percentage of smokers among lung cancer patients = 90%, i.e. SE of a model based on smoking status is 0.9
- Approx. 30% of population is composed of smokers ⇒ SP(= TNR, i.e. proportion of people who don't smoke and don't have cancer) is 70%.
- Assuming a lifetime risk of having lung cancer of 7.19% (= prevalence)

 $PPV = \mathbb{P}(\text{lung cancer during lifetime }|\text{smoker}) = 18.9\%$

ROC curve analysis

- In practical cases a classification model often assigns a score (e.g. proba)
- For each value of a threshold, one *SE* and one *SP* value
- Global quantification of performances = area under the curve (AUC)

Interpretation of AUC

AUC = probability that a random pair of predictions (\hat{y}^1, \hat{y}^2) is concordant with the observations i.e that the score of \hat{y}^1 is larger than the score of \hat{y}^2 if $y^1 > y^2$.

- S₁ = score in class we want to classify as positive (say, malignant), density f₁
- S_0 = score in other class (say, healthy/benign), density f_0
- T =threshold

$$AUC = \int_{T_{max}}^{T_{min}} SE(T) d(FPR(T))$$
$$SE(T) = \mathbb{P}(S \ge T|1) = \int_{T}^{T_{max}} f_1(x) dx$$
$$FPR(T) = \mathbb{P}(S \ge T|0) = \int_{T}^{T_{max}} f_0(x) dx$$

$$AUC = \int_{T_{min}}^{T_{max}} \int_{T}^{T_{max}} f_1(x) f_0(T) dT$$
$$= \mathbb{P}(S_1 \ge S_0)$$

Logistic regression

if OR = 1.5 there is a 50% increase of chance of having Y = 1 for an increase of x of one unit

Random Forests

 X_1

 $> t_2$

< t₂

- Binary classification/regression tree Sample dataset and choose < t1 splitting features randomly to **X**2
- Vote/average over trees

get a forest

Example: prediction of 5-years metastatic relapse in early-stage breast cancer

K = 25 features

outcome

n =642 patients w/o adjuvant

menopausal_status	ER	PR	Ki67	HER2	HER2_intensity	CK56	EGFR	VIM	ALDH1
Post-ménopause	20	0	0	0	0	0	0	0	0
Ménopause	40	95	8	0	0	0	0	0	0
Activité génitale	87	10	26	0	0	0	0	80	0
Post-ménopause	100	100	8	0	0	0	0	0	0
Post-ménopause	0	0	16	82	+++	0	0	0	0
Activité génitale	100	95	12	0	0	0	0	0	1
Activité génitale	56	100	17	0	0	0	0	0	0
Activité génitale	57	85	23	100	+++	0	0	0	0
Post-ménopause	80	5	20	0	0	0	0	0	0
Post-ménopause	0	0	15	100	+++	0	5	0	0
Post-ménopause	100	80	10	0	0	0	0	0	0
Post-ménopause	30	0	5	0	0	0	0	0	0
Post-ménopause	0	0	15	40	+++	0	0	0	0
Ménopause	0	80	8	0	0	0		0	0
Post-ménopause	0	0	27	0	0	0	30	0	1
Post-ménopause	0	0	56	0	0	80	60	100	0
Activité génitale	50	92	2	1	+	0	0	0	0
Post-ménopause	0	47	5	0	0	0	0	80	0
Post-ménopause	65	0	10	0	0	0	0	60	0
Post-ménopause	100	50	11	0	0	0	0	0	0
Ménopause	20	100	0	0	0	0	0	0	0
Activité génitale	90	6	5	0	0	0	0	0	0
Post-ménopause	100	3	5	0	0	0	0	0	0
Activité génitale	0	0	6	0	0	0	0	0	0
Ménopause	80	100	5	0	0	0	0	0	0
Post-ménopause	100	85	25	0	0	0		0	0
Post-ménopause	10	45	11	13	+++	0	0	0	0
Post-ménopause	66	1	2	40	++	0	0	0	0

metastatic_relapse	date_metastatic_relapse			
Yes	04/02/1999			
No				
No				
No				
Yes	04/09/1990			
Yes	08/02/1993			
Yes	15/12/1999			
No				
No				
Yes	08/03/1995			
No				
Yes	06/04/1990			
Yes	02/11/1994			
No				
Yes	27/10/1999			
No				

Institut Bergonié, Bordeaux, FR

Prediction results

Neural networks

 $y = f(b + a_1x_1 + \dots + a_nx_n), f = \text{logistic, softmax}, \dots$

Neural networks

[©]Debbie Maizels, Springer Nature

Success example of DL: computer vision

• 1.2 million images (ImageNet, Stanford) used to train a deep convolutional neural network

Krizhevsky, A. et al. ImageNet classification with deep convolutional neural networks, NIPS, 2012

Classification of skin lesions

Detection of lymph node metastases from histological images

- One pathology slide = several gigapixels
- Best algorithms of the challenge = Deep Learning
- Same performances as pathologists without time constraint, but significatively better than 11 pathologists with constraint (WTC)

Bejnordi et al., Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer, JAMA, 2017

Microscope 2.0

Chen et al. (Google Al Healthcare), Microscope 2.0: An Augmented Reality Microscope with Real-time Artificial Intelligence Integration, arXiv, 2018

Quantitative analysis of histopathological slides in CRC

ADI > threshold sliding window neural network BACK 224x224 47 layers DEB weighted sum 0 MUC <u>0</u>_0 mean MUS 0000 ⊜o output neuron deep NORM (0°0 activation stroma origi RGB : STR score TUM

- 100,000 patches of histological slides
- Stroma

p = 0.19

p < 0.01

94% classification accuracy on test data set

« Deep stroma score » is a predictive factor ٠ of survival independent of TNM stage (current state of the art) p = 0.33

Kather et al., Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study, PLoS Med, 2019

Prediction of response to immune-checkpoint inhibition

Sun et al., Lancet Oncol, 2018

Mechanistic modeling of time to relapse

- τ_{vis} = time to reach V_{vis}
- Time to relapse (TTR) = time elapsed from diagnosis to the appearance of a first visible metastasis

$$TTR = \inf \left\{ t > 0 : N_{vis}(t_{diag} + t) \ge 1 \right\}$$

Parameter β fixed such that $V_{\infty} = e^{\frac{\alpha}{\beta}} = 10^{12}$ cells

Mixed-effects statistical model

$$\ln\left(T^{i}\right) = \ln\left(TTR\left(V_{diag}^{i};\alpha^{i},\mu^{i}\right)\right) + \varepsilon^{i}, \quad \varepsilon^{i} \sim \mathcal{N}(0,\sigma^{2})$$

(Observation model)

$$S\left(t|\alpha^{i},\mu^{i}\right) = \mathbb{P}\left(T^{i} > t|\alpha^{i},\mu^{i}\right)$$

$$\ln\left(\alpha^{i}\right) = \ln\left(\alpha_{pop}\right) + \eta^{i}_{\alpha}, \quad \eta^{i}_{\alpha} \sim \mathcal{N}(0, \omega^{2}_{\alpha})$$
$$\ln\left(\mu^{i}\right) = \ln\left(\mu_{pop}\right) + \eta^{i}_{\mu}, \quad \eta^{i}_{\mu} \sim \mathcal{N}(0, \omega^{2}_{\mu})$$

Likelihood maximization performed using the SAEM algorithm implemented in the *saemix* R package

Survival function to account for censoring in the likelihood

Lavielle, CRC press, 2014

Comets, Lavenu, Lavielle, J Stat Softw, 2017

Descriptive power: fit to the data

Parameter	Estimate	r.s.e. (%)
$\log \alpha_{pop}$	-6.34	12.6
$\log \mu_{pop}$	-26.8	3.68
σ	0.542	28.4
ω_{lpha}	3.37	36.4
ω_{μ}	3.78	15.9

Predictive power: covariates

$$\ln\left(\mu^{i}\right) = \ln\left(\mu_{pop}\right) + \beta_{\mu}^{T} \mathbf{x}_{\mu}^{i} + \eta_{\mu}^{i}, \quad \eta_{\mu}^{i} \sim \mathcal{N}(0, \omega_{\mu}^{2})$$
$$\ln\left(\alpha^{i}\right) = \ln\left(\alpha_{pop}\right) + \beta_{\alpha}^{T} \mathbf{x}_{\alpha}^{i} + \eta_{\alpha}^{i}, \quad \eta_{\alpha}^{i} \sim \mathcal{N}(0, \omega_{\alpha}^{2})$$

ound		00	, ou. o		- /
.0 -			I	. 1	ЗĹ
			*	T	4
.9 -			-/	ι. i	
					1
.8			11		
			ļ ^r	1	
		i	(
.7	/	1			
		·			
.6	1				
	1				
.5					
0.5	0.6	07	0.8	n'9	10

Te	st set		Learning set										
	1	2	3	4	5	6	7	8		N			
	1	2	3	4	5	6	7	8		Ν			
	1	2	3	4	5	6	7	8		Ν			
	1	2	3	4	5	6	7	8		N			

Parameter	Estimate	r.s.e. (%)	p-value
$\log \alpha_{pop}$	-8.883	10.151	
$\beta_{\rm Ki67,\alpha}$	0.086	27.376	$2.59 \cdot 10^{-4}$
$\beta_{\mathrm{HER2},lpha}$	0.029	42.833	0.020
$\beta_{{ m CD44},\alpha}$	0.011	60.816	0.1
$\beta_{\text{TRIO},\alpha}$	0.016	58.119	0.085
$\log \mu_{pop}$	-26.342	3.696	
$\beta_{\mathrm{EGFR},\mu}$	0.039	47.527	0.035
σ	0.606	23.104	
ω_{lpha}	2.062	22.715	
ω_{μ}	3.563	16.759	

c-index = 0.67 (10-folds cross-validation)

Patient ID	Tumor size (mm)	Ki67	HER2	CD44	TRIO	EGFR	Observed TTR (cens)	Predicted TTR	Prediction error (days)
255	25	1	60	90	60	0	1812 (1)	1609	203
47	20	32	100	0	0	50	739(1)	447	292
143	18	60	0	50	0	0	2798(1)	434	2364
12	10	20	0	23	0	0	5970~(0)	$+\infty$	-

PhD of Chiara Nicolò

Comparison of predictive metrics

5 years metastatic-free survival

	AUROC	Accuracy	PPV	NPV
RSF	0.75	0.90	0.71	0.71
Mechanistic model	0.73	0.90	0.72	0.70
Cox	0.75	0.91	0.77	0.71

10 years metastatic-free survival

	AUROC	Accuracy	PPV	NPV
RSF	0.69	0.82	0.68	0.66
Mechanistic model	0.69	0.81	0.71	0.64
Cox	0.71	0.82	0.70	0.68

other tested ML models (support vector machine, k-nearest neighbors, gradient boosting) had similar or worse performances

Mechanistic

