Modeling and mathematical analysis of metastatic growth under angiogenic control

Sébastien Benzekry

LATP, University of Provence.
Pharmacokinetic Laboratory UMR MD3.
Marseille
PhD directed by D. Barbolosi, A. Benabdallah, F. Hubert.

Outline

1 Modeling
 - Introduction
 - ODE model of tumoral growth under angiogenic control (Folkman, 1999)
 - PDE model for the metastasis density

2 Analysis

3 Numerical simulations
 - Limit 2D-1D
 - Simulations
1 Modeling
 - Introduction
 - ODE model of tumoral growth under angiogenic control (Folkman, 1999)
 - PDE model for the metastasis density

2 Analysis

3 Numerical simulations
 - Limit 2D-1D
 - Simulations
Metastases

Contrast-enhanced X-ray computed tomographies (CT) of the liver with multiple metastatic tumors. Interval: 127 days. Image from Iwata et al., 2000

+ some of the metastases are not visible.

- **Primary Tumor**: x_p
- **Secondary Tumors** (Metastases): x

At $t = 0$: x_p

\[
\begin{align*}
\text{Primary Tumor} & \quad x_p \\
\text{Growth } g(x) & \quad \beta(x) \\
\text{Secondary Tumors} & \quad (\text{Metastases})
\end{align*}
\]
Existing model.

\[\text{Primary Tumor} \quad x_p \]

\[t = 2 \]

\[\text{Secondary Tumors} \quad (\text{Metastases}) \]

$$\rho(t,x) = \text{density of metastases of size } x \text{ at time } t.$$
Angiogenesis
Objectives of the model

- Predict the evolution of the number of metastases, especially the ones not visible with medical imaging (size $\leq 10^8$ cellules), by taking into account the angiogenic process.

- Take into account the effect of cytotoxic and cytostatic drugs in order to optimize the temporal administration protocols.

- The model is based on the conjugation of two existing models: Folkman et al., Cancer research 1999 and Iwata et al., Journal of theoretical biology 2000.
Modeling

- Introduction
- ODE model of tumoral growth under angiogenic control (Folkman, 1999)
- PDE model for the metastasis density

Analysis

Numerical simulations

- Limit 2D-1D
- Simulations
ODE model of tumoral growth under angiogenic control

Folkman et al., Cancer Research 1999

Gompertzian growth

\[x = \text{Size of the tumor} \]

\[
\frac{dx}{dt} = ax \ln \left(\frac{\theta}{x} \right)
\]
ODE model of tumoral growth under angiogenic control

Folkman et al., Cancer Research 1999

Gompertzian growth

\[x = \text{Size of the tumor} \]

\[\frac{dx}{dt} = ax \ln \left(\frac{\theta}{x} \right) \]

Consider \(\theta \) as a variable:

the angiogenic capacity

\[\frac{d\theta}{dt} = \left(\text{Stimulation by the tumor} \right) - \left(\text{Inhibition} \right) \]

\[= cx - dx^2 \theta \]
Anti-angiogenic drug.

Interest of this model = take into account for the effect of an anti-angiogenic drug (mice data).

\[\frac{d\theta}{dt} = cx - d\theta^2 - e\gamma(t)\theta \]
Phase plan of the system

\[\Omega = \begin{bmatrix} 1, \left(\frac{c}{d} \right)^{\frac{3}{2}} \end{bmatrix}^2 \]

\[G(x, \theta) = \begin{pmatrix} ax \ln \left(\frac{\theta}{x} \right) \\ cx - d\theta x^{\frac{2}{3}} \end{pmatrix} \]

\[\frac{dX}{dt} = G(X) \]

Convergence to an equilibrium point \(X^* = \left(\left(\frac{c}{d} \right)^{\frac{3}{2}}, \left(\frac{c}{d} \right)^{\frac{3}{2}} \right) \). Studied in Gandolfi and d’Onofrio et al., 2004.
Modeling

1. Introduction
2. ODE model of tumoral growth under angiogenic control (Folkman, 1999)
3. PDE model for the metastasis density

Analysis

Numerical simulations

1. Limit 2D-1D
2. Simulations
Conservation equation for the metastases

Primitive tumor and metastases follow the previous ODE model. Population of the metastases structured in size x and angiogenic capacity θ:

$$\rho(t, x, \theta) \in L^1(\Omega).$$

Balance law:

$$\partial_t \rho + \text{div}(\rho G) = 0$$
Conservation equation for the metastases

Primitive tumor and metastases follow the previous ODE model. Population of the metastases structured in size x and angiogenic capacity θ:

$$\rho(t, x, \theta) \in L^1(\Omega).$$

Balance law:

$$\partial_t \rho + \text{div}(\rho G) = 0$$

Birth rate of new metastases of parameter σ per meta of size x and angiogenic capacity θ per unit of time:

$$B(\sigma, x, \theta) = N(\sigma)\beta(x, \theta), \quad \sigma \in \partial \Omega$$

We choose:

$$N(\sigma) = \frac{1}{2\Delta \sigma}1_{\sigma \in [\sigma_0-\Delta \sigma, \sigma_0+\Delta \sigma]}, \quad \beta(x, \theta) = mx^\alpha$$

Two sources of new metastases:

- Primitive tumor $X_p(t)$ with $\frac{dX_p}{dt} = G(X_p)$: $N(\sigma)\beta(X_p(t)) = f(t, \sigma)$
- Metastases themselves: $N(\sigma)\int_\Omega \beta(x, \theta)\rho(t, x, \theta)dx\,d\theta$
PDE model for the metastasis density

\[
\begin{aligned}
\partial_t \rho + \text{div}(G \rho) &= 0 & \text{on }]0, \infty[\times \Omega \\
-G \cdot \nabla \rho(t, \sigma) &= N(\sigma) \int_{\Omega} \beta \rho(t, x, \theta) dx d\theta + f(t, \sigma) & \text{on } \partial \Omega \\
\rho(0) &= \rho^0 & \text{on } \Omega
\end{aligned}
\]
Equation

\[
\begin{aligned}
\partial_t \rho + \text{div}(G \rho) &= 0 \\
-G \cdot \nabla \rho(t, \sigma) &= N(\sigma) \int_\Omega \beta \rho(t, x, \theta) dx d\theta + f(t, \sigma) \\
\rho(0) &= \rho^0
\end{aligned}
\]

on $]0, \infty[\times \Omega$

on $\partial \Omega$

on Ω

- Linear transport equation in **dimension 2**, with **vanishing velocity field**.
PDE model for the metastasis density

\[
\begin{align*}
\partial_t \rho + \text{div}(G \rho) &= 0 \quad \text{on }]0, \infty[\times \Omega \\
-G \cdot \nu \rho(t, \sigma) &= N(\sigma) \int \beta \rho(t, x, \theta) dx d\theta + f(t, \sigma) \quad \text{on } \partial \Omega \\
\rho(0) &= \rho^0 \quad \text{on } \Omega
\end{align*}
\]

- Linear transport equation in **dimension 2**, with vanishing velocity field.

- **Nonlocal boundary condition**
Equation

\[
\begin{aligned}
\frac{\partial}{\partial t} \rho + \text{div}(G \rho) &= 0 \\
-G \cdot \vec{v}(t, \sigma) &= N(\sigma) \int_\Omega \beta \rho(t, x, \theta) dx d\theta + f(t, \sigma) \\
\rho(0) &= \rho^0
\end{aligned}
\]

- Linear transport equation in **dimension 2**, with vanishing velocity field.
- Nonlocal boundary condition + **Source term**
Modeling

1. Introduction
2. ODE model of tumoral growth under angiogenic control (Folkman, 1999)
3. PDE model for the metastasis density

Analysis

Numerical simulations

1. Limit 2D-1D
2. Simulations
Straightening up the characteristics

\[W_{\text{div}}(\Omega) := \{ V \in L^1(\Omega) \mid \text{div}(GV) \in L^1(\Omega) \} \]

- Change of variables:

\[
\begin{align*}
\partial_\tau \Phi &= G(\Phi) \\
\Phi(0) &= \sigma \\
\Phi : \Omega &\rightarrow \Omega \\
(\tau, \sigma) &\mapsto \Phi_\tau(\sigma) \\
\end{align*}
\]

\[
\partial_\tau V(\Phi_\tau(\sigma)) = G \cdot \nabla V
\]

\[\Phi \text{ is a \textbf{locally bilipschitz homeomorphism}.} \]
Preliminary result

- The jacobian
 \[J_{\Phi}(\tau, \sigma) = G \cdot \overrightarrow{v}(\sigma)e^{\int_0^\tau \text{div}(G(\Phi_s(\sigma)))ds} \]

- From the singularity of \(G \), \(J_{\Phi}^{-1} \notin L^{\infty} \).

Proposition

The spaces \(W_{\text{div}}(\Omega) \) and \(W^{1,1}((0, +\infty); L^1(\partial \Omega)) \) are conjugated via \(\Phi \):

\[V \in W_{\text{div}}(\Omega) \iff (V \circ \Phi)|J_{\Phi}| \in W^{1,1}((0, +\infty); L^1(\Gamma)). \]

For \(V \in W_{\text{div}}(\Omega) \) we have

\[\partial_{\tau}(V \circ \Phi|J_{\Phi}|) = (\text{div}(GV) \circ \Phi)|J_{\Phi}|. \]
The jacobian

\[J_\Phi(\tau, \sigma) = G \cdot \vec{\nu}(\sigma)e^{\int_0^\tau \text{div}(G(\Phi_s(\sigma)))ds} \]

From the singularity of \(G \), \(J_\Phi^{-1} \notin L^\infty \).

Proposition

The spaces \(W_{\text{div}}(\Omega) \) and \(W^{1,1}((0, +\infty); L^1(\partial\Omega)) \) are conjugated via \(\Phi \):

\[V \in W_{\text{div}}(\Omega) \iff (V \circ \Phi)|_{J_\Phi} \in W^{1,1}((0, +\infty); L^1(\Gamma)). \]

For \(V \in W_{\text{div}}(\Omega) \) we have

\[\partial_\tau(V \circ \Phi|_{J_\Phi}) = (\text{div}(GV) \circ \Phi)|_{J_\Phi}. \]

⇒ **Trace**

\[V|_{\partial\Omega}(\sigma) := V \circ \Phi(0, \sigma) \in L^1(\partial\Omega; G \cdot \nu d\sigma) \]
Existence, uniqueness and regularity

\[D(A) = \left\{ V \in W_{\text{div}}; -G \cdot \nabla V_{|\Gamma}(\sigma) = N(\sigma) \int_{\Omega} \beta V \right\} \]

Theorem

- For \(\rho^0 \in L^1(\Omega) \) and \(f \in L^1([0, \infty) \times \Gamma) \), there is a **unique weak solution** and
 \[\rho \in C([0, \infty]; L^1(\Omega)). \]

- For \(\rho^0 \in D(A) \) and \(f \in C^1([0, \infty]; L^1(\Gamma)) \), with \(f(0) = 0 \),
 \[\rho \in C^1([0, \infty]; L^1(\Omega)) \cap C([0, \infty]; W_{\text{div}}(\Omega)) \]
Spectral problem

Find

\[
\begin{aligned}
(\lambda, V, \psi) &\in \mathbb{R}_+^* \times D(A) \times D(A^*) \\
AV &= \lambda V, \quad A^*\psi = \lambda \psi \\
\int_\Omega V\psi \, dx \, d\theta &= 1, \quad \int_{\partial\Omega} \psi N = 1, \quad \psi \geq 0
\end{aligned}
\]

Proposition

Under the assumption \(\int_0^\infty \int_{\partial\Omega} \beta(\Phi_\tau(\sigma)) N(\sigma) \, d\tau \, d\sigma > 1 \), *there is a unique solution* \((\lambda_0, V, \psi)\). *The principal eigenvalue* \(\lambda_0\) *solves*

\[
\int_0^{+\infty} \int_{\partial\Omega} \beta(\Phi_\tau(\sigma)) N(\sigma) e^{-\lambda_0 \tau} \, d\tau \, d\sigma = 1
\]

The eigenvectors are given by

\[
V(\Phi_\tau(\sigma)) = C_{\lambda_0} N(\sigma) e^{-\lambda_0 \tau} |J_\Phi|^{-1}, \quad \psi(\Phi_\tau(\sigma)) = e^{\lambda_0 \tau} \int_\tau^\infty \beta(\Phi_s(\sigma)) e^{-\lambda_0 s} \, ds
\]
Asymptotic behavior

Theorem

Assume that there exists $\mu > 0$ such that $\beta - \mu \Psi \geq 0$. Then

\[
\| \rho(t)e^{-\lambda_0 t} - m(t)V \|_{L^1_\Psi} \leq e^{-\mu t}\{\| \rho^0 - m_0 V \|_{L^1_\Psi} \\
+ 2 \int_0^t e^{-(\lambda_0 - \mu)s} \int_{\partial \Omega} |f|(s, \sigma)\Psi(\sigma) ds\},
\]

\[
\| f \|_{L^1_\Psi} = \int_\Omega |f|\Psi
\]
Asymptotic behavior

Theorem

Assume that there exists $\mu > 0$ such that $\beta - \mu \Psi \geq 0$. Then

$$\| \rho(t)e^{-\lambda_0 t} - m(t)V \|_{L^1_\Psi} \leq e^{-\mu t}\{\| \rho^0 - m_0 V \|_{L^1_\Psi}$$

$$+ 2 \int_0^t e^{-(\lambda_0 - \mu)s} \int_{\partial\Omega} |f(s, \sigma)|\Psi(\sigma)ds\},$$

$$\| f \|_{L^1_\Psi} = \int_\Omega |f||\Psi$$

- Convergence with **exponential rate**
Asymptotic behavior

Theorem

Assume that there exists \(\mu > 0 \) such that \(\beta - \mu \psi \geq 0 \). Then

\[
||\rho(t)e^{-\lambda_0 t} - m(t)\nabla||_{L^1_\psi} \leq e^{-\mu t} \{ ||\rho^0 - m_0 \nabla||_{L^1_\psi} \\
+ 2 \int_0^t e^{-(\lambda_0 - \mu)s} \int_{\partial\Omega} |f|(s, \sigma)\psi(\sigma)d\sigma ds \},
\]

\[
||f||_{L^1_\psi} = \int_{\Omega} |f|\psi
\]

\[
m(t) = e^{-\lambda_0 t} \int_{\Omega} \rho(t)\psi = \int_{\Omega} \rho^0\psi + \int_0^t e^{-\lambda_0 s} \int_{\partial\Omega} f(s, \sigma)\psi(\sigma)d\sigma ds.
\]

- Convergence with exponential rate
- Takes into account the **source term**
Theorem

Assume that there exists $\mu > 0$ such that $\beta - \mu \Psi \geq 0$. Then

$$||\rho(t)e^{-\lambda_0 t} - m(t)V||_{L^1_\Psi} \leq e^{-\mu t} \{||\rho^0 - m_0 V||_{L^1_\Psi}$$

$$+ 2 \int_0^t e^{-(\lambda_0 - \mu) s} \int_{\partial \Omega} |f(s, \sigma)\Psi(\sigma)| ds\},$$

$$m(t) = e^{-\lambda_0 t} \int_\Omega \rho(t)\Psi = \int_\Omega \rho^0 \Psi + \int_0^t e^{-\lambda_0 s} \int_{\partial \Omega} f(s, \sigma)\Psi(\sigma) d\sigma ds.$$
1 Modeling
 - Introduction
 - ODE model of tumoral growth under angiogenic control (Folkman, 1999)
 - PDE model for the metastasis density

2 Analysis

3 Numerical simulations
 - Limit 2D-1D
 - Simulations
Discretization of the problem.

- Classical upwind scheme is **not stable**.
- Scheme based on **integration along the characteristics**.
- Problem: high computational cost (2D). **How to improve it?**
Discretization of the problem.

- Classical upwind scheme is not stable.
- Scheme based on integration along the characteristics.
- Problem: high computational cost (2D). How to improve it?

Idea: assume that new metastases are born with a vasculature very close to a value σ_0.

\[
\begin{align*}
 N(\sigma) &= N^\varepsilon(\sigma) = \frac{1}{2\varepsilon} = 1_{\sigma \in [\sigma_0-\varepsilon, \sigma_0+\varepsilon]} \\
 \delta\sigma &= \sigma_0 \\
 \partial_t \rho^\varepsilon + \text{div}(\rho^\varepsilon G) &= 0 \\
 -G \cdot \nu(\sigma)\rho^\varepsilon(t, \sigma) &= N^\varepsilon(\sigma) \left\{ \int_\Omega \beta \rho^\varepsilon(t) + f(t) \right\} \\
 \rho^\varepsilon(0) &= 0
\end{align*}
\]
Theorem (Benzekry, 2010)

We have

\[\rho^\varepsilon(t) \rightharpoonup d\rho(t) \in C([0, T]; (C_b)') \],

with convergence in \(C([0, T]; * - (C_b)') \) for all \(T > 0 \). The expression of \(d\rho(t) \) is given by:

\[\forall \psi \in C_b(\Omega) \]

\[< d\rho(t), \psi > = \int_0^\infty \psi(\Phi_\tau(\sigma_0))n(t, \tau) d\tau \]

with \(n \) solving the 1D problem

\[
\begin{align*}
\partial_t n + \partial_\tau n &= 0 \\
n(t, 0) &= \int_0^\infty \beta(\Phi_\tau(\sigma_0))n(t, \tau) + f(t), \quad n(0, \tau) = 0.
\end{align*}
\]

The measure \(d\rho(t) \) solves the following problem:

\[
\begin{align*}
\partial_t d\rho + \text{div}(d\rho G) &= 0 \\
- G \cdot \nu(\sigma)d\rho(t, \sigma) &= \delta_{\sigma=\sigma_0} \left\{ \int_\Omega \beta d\rho(t) + f(t) \right\}, \quad d\rho(0) = 0.
\end{align*}
\]
Numerical illustration

Relative difference between the 1D problem and the 2D one VS ε.

Comparison between the 2D problem with $\varepsilon = 0.1$ and the 1D problem.

Improvement of the computational time:

\[
\begin{array}{ccc}
T & dt & T & dt \\
5 & 0.1 & 5.8 & 0.133 & 35 \\
20 & 0.1 & 5.9 & 0.351 & 519
\end{array}
\]

Computation times in seconds on a personal computer.

Sébastien Benzekry (LATP Marseille)
Numerical illustration

Relative difference between the 1D problem and the 2D one VS ε.

\Rightarrow Improvement of the computational time:

<table>
<thead>
<tr>
<th>T</th>
<th>dt</th>
<th>2D</th>
<th>1D</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T = 5$, $dt = 0.1$</td>
<td>5.8</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>$T = 5$, $dt = 0.01$</td>
<td>333</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>$T = 20$, $dt = 0.01$</td>
<td>5331</td>
<td>519</td>
<td></td>
</tr>
</tbody>
</table>

Comparison between the 2D problem with $\varepsilon = 0.1$ and the 1D problem.

Computation times in seconds on a personal computer.
1 Modeling
 - Introduction
 - ODE model of tumoral growth under angiogenic control (Folkman, 1999)
 - PDE model for the metastasis density

2 Analysis

3 Numerical simulations
 - Limit 2D-1D
 - Simulations
Time evolution of the density
Asymptotic behavior

Number of metastases (log scale).

\[\lambda_0 = 0.10682 \]

Spectral equation:

\[\int_0^\infty \int_{\partial \Omega} \beta(\Phi_\tau(\sigma)) e^{-\lambda_0 \tau} = 0.9909 \]
Asymptotic behavior

Number of metastases (log scale).

Asymptotic distribution of the density (projection in x).

Direct eigenvector times $e^{\lambda_0 T}$ (projection in x).

$\lambda_0 = 0.10682$

Spectral equation:

$$\int_0^\infty \int_{\partial \Omega} \beta(\Phi_T(\sigma)) e^{-\lambda_0 \tau} = 0.9909$$
Without treatment. Primary tumor VS Metastases.

Number of metastases until time $T = 30$ days.

Number of metastases until time $T = 50$ days
Without treatment. Visible VS not visible.
With anti-angiogenic treatment

\[G_2(t, x, \theta) = cx - d\theta x^3 - e\gamma(t) \]

Testing various drugs:

- Primary tumor growth
- Metastatic evolution
Conclusion and perspectives

- Construction of a **simple model** (5 parameters) for the metastatic process.

- Theoretical study of the equation.

- Efficient numerical scheme.
Conclusion and perspectives

- Construction of a **simple model** (5 parameters) for the metastatic process.

- Theoretical study of the equation.

- Efficient numerical scheme.

Perspectives:

- **Validation** of the model by comparison with mice experiments.

- Use the model to test *in silico* various **administration protocols** for the drugs. Combination of cytotoxic/anti-angiogenic drugs. Integrate more complex PK’s, interface model and toxicities control.

- Address and solve the **inverse problem**. Parameters identification.
Thank you for your attention!
Weak solutions

Definition

For $\rho^0 \in L^1(\Omega)$ and $f \in L^1(]0, \infty[\times \partial \Omega)$, a weak solution of the equation is a function $\rho \in C([0, \infty[; L^1(\Omega))$ such that: for all $T > 0$ and all $\psi \in C_c^1([0, T] \times \overline{\Omega}^*)$

$$\int_0^T \int_{\Omega} \rho [\partial_t \psi + G \cdot \nabla \psi] + \int_{\Omega} \rho^0(\cdot) \psi(0, \cdot) - \int_{\Omega} \rho(T, \cdot) \psi(T, \cdot)$$

$$- \int_0^T \int_{\partial \Omega} N(\sigma) \int_{\Omega} \beta(x, \theta) \rho(t, x, \theta) dx d\theta \psi(t, \sigma) d\sigma dt = 0$$
Weak solutions

Definition

For $\rho^0 \in L^1(\Omega)$ and $f \in L^1([0, \infty[\times \partial \Omega)$, a weak solution of the equation is a function $\rho \in C([0, \infty[; L^1(\Omega))$ such that: for all $T > 0$ and all $\psi \in C^1_c([0, T[\times \overline{\Omega}^*)$

$$\int_0^T \int_\Omega \rho [\partial_t \psi + G \cdot \nabla \psi] + \int_\Omega \rho^0(\cdot) \psi(0, \cdot) - \int_\Omega \rho(T, \cdot) \psi(T, \cdot)$$

$$- \int_0^T \int_{\partial \Omega} N(\sigma) \int_\Omega \beta(x, \theta) \rho(t, x, \theta) dx d\theta \psi(t, \sigma) d\sigma dt = 0$$

- For regular solutions define the domain of the operator $A : V \mapsto -\text{div}(GV)$:

$$D(A) = \left\{ V \in W_{\text{div}}; -G \cdot \nu V|_{\partial \Omega}(\sigma) = N(\sigma) \int_\Omega \beta V \right\}$$

- Assumptions on the data

$$\beta \in L^\infty, \beta \geq 0 \text{ pp}, \ N \in \text{Lip}_c(\partial \Omega^*), \ N \geq 0, \int_{\partial \Omega} N = 1$$