Optimal schedules for therapies in metastatic cancers

Sébastien Benzekry
under the direction of D. Barbolosi, A. Benabdallah and F. Hubert

LATP, Université de Provence and
Laboratoire de Toxicocinétique et Pharmacocinétique, Université de la Méditerranée
Marseille

ECMTB, Krakow, June 28, 2011
Clinical problematics

- In the case of breast cancer, 10% of cancers in stage T1N0M0 give rise to metastasis.

- Micrometastases (size $< 10^8$ cells $\simeq 100$ mg) invisible with imaging techniques. How to administer adjuvant therapy (after surgery) without seeing anything?

- What is the best **scheduling** for: chemotherapy (CT), anti-angiogenics (AA), CT $+$ AA?

The tool: a "simple" modelling (with **few parameters**)

- tumoral growth model (ODE)
- renewal model for the metastases (PDE)
Outline

1 A model for metastatic evolution

2 An optimal control problem for the metastases
 - Formulation of an optimal control problem
 - Theoretical study

3 Numerical study in a simplified case
 - First examples
 - Optima comparison in a two-dimensional case
ODE model of tumoral growth under angiogenic control

Hahnfeldt et al., Cancer Research 1999

Gompertzian growth

\[x = \text{Size of the tumor} \]

\[\frac{dx}{dt} = ax \ln \left(\frac{\theta}{x} \right) \]

Consider \(\theta \) as a variable: the **vascular capacity**

\[\frac{d\theta}{dt} = \frac{cx}{\theta} - \frac{dx^2 \theta}{3} \]

Stimulation by the tumor

Inhibition

Hahnfeldt model and CT/AA combination

\[\frac{dx}{dt} = ax \ln \left(\frac{\theta}{x} \right) - f u^1(t)(x - x_{\text{min}})^+ \]

\[\frac{d\theta}{dt} = cx - d\theta x^2 \theta^2 - e u^2(t)(\theta - \theta_{\text{min}})^+ \]

- Log-kill term of the chemotherapy
- AA drugs impact on the tumoral vasculature

Studied in d’Onofrio, Gandolfi, 2004
A model for metastatic evolution
An optimal control problem for the metastases
Numerical study in a simplified case

Transport equation for the metastases population

\[\Omega = \left[1, \left(\frac{c}{d} \right)^{\frac{3}{2}} \right]^2 \]

\[G(X) = G(x, \theta) = \begin{pmatrix} ax \ln \left(\frac{\theta}{x} \right) \\ cx - d\theta x^3 \end{pmatrix} \]

\[u(t) = (u^1(t), u^2(t)) \]

\[\overline{G}(t, X; u) = G(X) - B(X)u(t) \]

\[\frac{dX}{dt} = G(X) \]

All the tumors follow the ODE model.

Population of the metastases structured in size \(x \) and vascular capacity \(\theta \) density \(\rho(t, x, \theta) \in L^1(\Omega) \).

Balance law:

\[\partial_t \rho + \text{div}(\rho \overline{G}) = 0 \]
Boundary condition. Birth of new metastases

We assume

- That the metastases are born with size 1
- **Independance** between the vascular capacity of the neo-metastasis and the mother-tumour which emitted it

Birth rate of new metastases of parameter σ per meta of size x and angiogenic capacity θ per unit of time:

$$B(\sigma, x, \theta) = N(\sigma)\beta(x, \theta), \quad \sigma \in \partial\Omega$$

We choose:

$$N(\sigma) = \frac{1}{2\Delta\sigma}1_{\sigma \in [\sigma_0 - \Delta\sigma, \sigma_0 + \Delta\sigma]}$$

$$\beta(x, \theta) = mx^\alpha$$

Two sources of new metastases:

- Primitive tumor $X_p(t)$ with $\frac{dX_p}{dt} = \mathcal{G}(X_p) : N(\sigma)\beta(X_p(t))$
- Metastases themselves: $N(\sigma)\int_\Omega \beta(x, \theta)\rho(t, x, \theta)dx\,d\theta$
Metastatic model

\[
\begin{aligned}
\frac{\partial \rho(u)}{\partial t} + \text{div}(\overline{G(u)}\rho(u)) &= 0 \\
-\overline{G}(t,\sigma;u) \cdot \nu(\sigma)\rho(t,\sigma;u) &= N(\sigma) \left\{ \int_{\Omega} \beta(X)\rho(t,X;u)dX + \beta(X_0(t,u)) \right\} \\
\rho(0) &= \rho^0
\end{aligned}
\]

\[
\overline{G}(t,X;u) = G(X) - B(X)u(t), \quad u(t) = (u^1(t), u^2(t))
\]

Number of metastases: \(\int_{\Omega} \rho(t,X)dX \). Metastatic mass: \(\int_{\Omega} x\rho(t,X)dX \)

- Linear transport equation in dimension 2 with nonlocal boundary condition.

- Theoretical and numerical analysis has been performed

 B., J. Evol. Equ., 2011

 B., M2AN, 2011

 Barbolosi, Benabdallah, Hubert, Verga, Math. Biosc., 2008

- Original idea for a structured population equation for the metastases

1 A model for metastatic evolution

2 An optimal control problem for the metastases
 - Formulation of an optimal control problem
 - Theoretical study

3 Numerical study in a simplified case
 - First examples
 - Optima comparison in a two-dimensional case
Formulation of an optimal control problem

On the primary tumor growth: $$\dot{X}_p(t; u) = G(X_p(t; u)) - B(X_p(t; u))u(t)$$

- Already studied

- Two possible criteria to be minimized for the primary tumor size
 $$J_T(u) = x_p(T; u) \quad \text{and} \quad J_m(u) = \min_{t \in [0,T]} x_p(t; u)$$

- Toxicity constraints
 $$\mathcal{U}_{ad} = \left\{ u \in (L^\infty(0, T))^2; \begin{pmatrix} 0 \\ 0 \end{pmatrix} \leq u(t) \leq \begin{pmatrix} v_{\max} \\ u_{\max} \end{pmatrix} \forall t \text{ and } \int_0^T u(t) dt \leq \begin{pmatrix} C_{\max} \\ A_{\max} \end{pmatrix} \right\}$$
Formulation of an optimal control problem

On the primary tumor growth: \(\dot{X}_p(t; u) = G(X_p(t; u)) - B(X_p(t; u))u(t) \)

- Already studied

- Two possible criteria to be minimized for the primary tumor size
 \[
 J_T(u) = x_p(T; u) \quad \text{and} \quad J_m(u) = \min_{t \in [0, T]} x_p(t; u)
 \]

- Toxicity constraints
 \[
 \mathcal{U}_{ad} = \left\{ u \in (L^\infty(0, T))^2; \begin{pmatrix} 0 \\ 0 \end{pmatrix} \leq u(t) \leq \begin{pmatrix} v_{\text{max}} \\ u_{\text{max}} \end{pmatrix} \quad \forall t \quad \text{and} \quad \int_0^T u(t) dt \leq \begin{pmatrix} C_{\text{max}} \\ A_{\text{max}} \end{pmatrix} \right\}
 \]

On the metastases

\[
J(u) = \int_{\Omega} \rho(T, X; u) dX \quad \text{and} \quad J_M(u) = \int_{\Omega} x\rho(T, X; u) dX
\]

\(\text{Total number of metastases} \quad \text{Metastatic mass} \)
Formulation of an optimal control problem

On the primary tumor growth: \(\dot{X}_p(t; u) = G(X_p(t; u)) - B(X_p(t; u))u(t) \)

- Already studied

- Two possible criteria to be minimized for the primary tumor size

\[
J_T(u) = x_p(T; u) \quad \text{and} \quad J_m(u) = \min_{t \in [0T]} x_p(t; u)
\]

- Toxicity constraints

\[
\mathcal{U}_{ad} = \left\{ u \in (L^\infty(0, T))^2; \begin{pmatrix} 0 \\ 0 \end{pmatrix} \leq u(t) \leq \begin{pmatrix} v_{\text{max}} \\ u_{\text{max}} \end{pmatrix} \forall t \quad \text{and} \quad \int_0^T u(t) dt \leq \begin{pmatrix} C_{\text{max}} \\ A_{\text{max}} \end{pmatrix} \right\}
\]

On the metastases

\[
J(u) = \int_\Omega \rho(T, X; u)dX \quad \text{and} \quad J_M(u) = \int_\Omega x\rho(T, X; u)dX
\]

Total number of metastases

Metastatic mass

Is there a difference in the optimal minimizer \(u^* \) for \(J_T, J_m, J, J_M \)?
Existence of an optimal solution

Theorem

Under some regularity assumptions there exists \((u^*, u_M^*) \in \mathcal{U}_{ad}\) such that

\[
J(u^*) \leq J(u), \quad \forall u \in \mathcal{U}_{ad}, \quad J_M(u_M^*) \leq J_M(u), \quad \forall u \in \mathcal{U}_{ad}
\]

The proof is based on the following proposition

Proposition

Under some regularity assumptions if \(\rho(u)\) is the solution of (E), then \(\rho \in W^{1,\infty}(Q)\) and there exists a continuous function \(C\) which can be explicited in terms of \(\|\beta\|_{W^{1,\infty}(\Omega)}, \|N\|_{W^{1,\infty}(\partial\Omega)}, \|G\|_{L^{\infty}(\Omega)}\) and \(\|B\|_{L^{\infty}(\Omega)}\) such that, for all \(u \in \mathcal{U}_{ad}\)

\[
\|\rho(u)\|_{W^{1,\infty}(Q)} \leq C(\|u\|_{L^{\infty}(Q)})
\]
In the case of $J(u) = \int_{\Omega} \rho(T, X; u) dX$ and without the source term in the boundary condition

Proposition

Let u^* be a solution of the optimal control problem. We have the following **optimality system**:

\[
\begin{align*}
\partial_t \rho^* + \text{div}(\rho^* \overline{G}(u^*)) &= 0 \\
- G \cdot \nu(t, \sigma; u^*) \rho^*(t, \sigma; u^*) &= N(\sigma) \left\{ \int_{\Omega} \beta(X) \rho^*(t, X; u^*) dX + \beta(X_p(t; u^*)) \right\} \\
\rho^*(0, X; u^*) &= \rho^0 \\
-\partial_t p^*(t, X; u^*) - \overline{G}(X; u^*) \nabla p^*(t, X; u^*) - \beta(X) \int_{\partial \Omega} N(\sigma) p^*(t, \sigma) d\sigma &= 0 \\
p^*(T) &= -1.
\end{align*}
\]

\[
\int_0^T \int_{\Omega} p^* \text{div}(\rho^* B(X) \cdot (v - u^*)) \, dX \, dt \leq 0, \quad \forall v \in \mathcal{U}_{ad}.
\]
1. A model for metastatic evolution

2. An optimal control problem for the metastases
 - Formulation of an optimal control problem
 - Theoretical study

3. Numerical study in a simplified case
 - First examples
 - Optima comparison in a two-dimensional case
Anti-angiogenic therapy

Testing the drugs from *Hahnfeldt et al., Cancer Res. 99* (mice data):

- Endostatine 20 mg/kg/day
- Angiostatine 20 mg/kg/day
- TNP-470 30 mg/kg/q.o.d
First examples

Combination of cytotoxic and anti-angiogenic therapy

Human parameters. Etoposide/Bevacizumab combination. Order of administration?

- Bevacizumab D0 Etoposide D8 VS Etoposide D0 Bevacizumab D8

The best protocol is **not the same** for the primary tumor and for the number of metastases.
Optima comparison in a two-dimensional case

Administer total given amounts of agents \((C_{\text{max}}, A_{\text{max}}) \) from time 0 to times \((t_v, t_u) \) at constant rates \(V = \frac{C_{\text{max}}}{t_v} \) and \(U = \frac{A_{\text{max}}}{t_u} \).

U. Ledzewicz et al., Math. Medic. and Biol., 2010

Examples of administration of the AA drug

\[
\mathcal{U}_{ad} = \{ u^1(t) = \frac{C_{\text{max}}}{t_v} 1_{[0,t_v]}(t), \quad u^2(t) = \frac{A_{\text{max}}}{t_u} 1_{[0,t_u]}(t), \quad \left(\frac{C_{\text{max}}}{v_{\text{max}}}, \frac{A_{\text{max}}}{u_{\text{max}}} \right) \leq (t_v, t_u) \}.
\]

\[
\mathcal{U}_{ad} \approx \left[\frac{C_{\text{max}}}{v_{\text{max}}}, T \right] \times \left[\frac{A_{\text{max}}}{u_{\text{max}}}, T \right] = [1, 10] \times [4, 10]
\]

Primary tumor evolution

Sébastien Benzekry (Marseille)

Optimal schedules in metastatic cancers

June 28, 2011 12 / 16
Optima comparison in a two-dimensional case

Monotherapy cases

Criteria J_T, J_m and J give **different optimal values**.
- Metastatic mass J_M gives the same optimal value as J_T.
- Difference between CT and AA: shape of J_M.

AA alone. $C_{\text{max}} = 0$

CT alone. $A_{\text{max}} = 0$.
CT-AA combination

<table>
<thead>
<tr>
<th>Criterion</th>
<th>J_T</th>
<th>J_m</th>
<th>J</th>
<th>J_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(t_v^, t_u^)$</td>
<td>(9.5, 9.5)</td>
<td>(1, 4)</td>
<td>(1, 5.5)</td>
<td>(10, 9)</td>
</tr>
</tbody>
</table>

We can regroup J and J_m under the strong dose/short time strategy and J_T and J_M under the low dose/large time one.
Influence of the presence of a drug on the behavior of the other

$t_v = 1$

Effect of CT on AA

J_T, J and J_M are almost identical but J_m has the reverse behavior

$t_v = 10$

$t_u = 4$

Effect of AA on CT

Drastrical changes for J_T and J_M. J is stable

$t_u = 10$
Conclusion

- Simple model for metastatic evolution
- Difference of the optimal solution between the primary tumor and the metastases.
- Necessity to define precisely the objective(s) to be minimized.

How to cleverly combine tumoral and metastatic reduction?

Use the metastatic mass \(J_M = \int_{\Omega} x \rho(t, x, \theta) dx d\theta \)?

Linear combination between a tumoral criterion and the number of metastases?

Perspectives

- Numerical method for the infinite-dimensional optimal control problem on the metastases (PDE)
- Further theoretical study of the theoretical optimality system
CT-AA combination
Graphs of $t_v \mapsto \arg\min_{t_u} J_X(t_u, t_v)$

- For J_m: synchronization effect
- J, J_M and J_T are stable

Graphs of $t_u \mapsto \arg\min_{t_v} J_X(t_u, t_v)$

- For J_T: change in the optimal value t_v^*.
- J, J_M and J_m are stable