Modeling of the metastatic evolution and optimization of anti-cancerous therapies

Sébastien Benzekry
under the direction of D. Barbolosi, A. Benabdallah and F. Hubert

LATP, Université de Provence and
Laboratoire de Toxicocinétique et Pharmacocinétique, Université de la Méditerranée
Marseille

ICIAM, Vancouver, July 22, 2011
Clinical problematics

“Metastasis is the main cause of death in cancer disease”

Weinberg, 2006

Metastatic cancers are **systemic diseases** which have to be thought at the **organism scale**.

Micrometastases (size $< 10^7$ cells) are **invisible** with imaging techniques. How to administer adjuvant therapy (after surgery) without seeing anything?

What is the best **scheduling** for: chemotherapy (CT), anti-angiogenics (AA), CT + AA?

The **tool** : a simple modelling (with **few parameters**)

- **tumoral growth model (ODE)**
- **renewal model for the metastases (PDE)**
Outline

1. A model for metastatic evolution
2. An optimal control problem for the metastases
3. Numerical study in a simplified case
ODE model of tumoral growth under angiogenic control

Hahnfeldt et al., Cancer Research 1999

Gompertzian growth

\[x = \text{Size of the tumor} = \text{Volume/Number of cells} \]

\[\frac{dx}{dt} = ax \ln \left(\frac{\theta}{x} \right) \]

Consider \(\theta \) as a variable: the vascular capacity

\[\frac{d\theta}{dt} = cx - dx^{\frac{2}{3}} \theta \]

Hahnfeldt model and CT/AA combination

\[\frac{dx}{dt} = ax \ln \left(\frac{\theta}{x} \right) - f \left(u_1(t)(x - x_{\text{min}})^+ \right) \]

\[\frac{d\theta}{dt} = cx - d\theta x^{\frac{2}{3}} - e \left(u_2(t)(\theta - \theta_{\text{min}})^+ \right) \]

- Log-kill term of the chemotherapy
- AA drugs impact on the tumoral vasculature
Transport equation for the metastases population

\[\Omega = [1, x_{\text{max}}^2] \]

\[G(X) = G(x, \theta) = \left(\begin{array}{c} ax \ln \left(\frac{\theta}{x} \right) \\ cx - d\theta x^{\frac{2}{3}} \end{array} \right) \]

\[u(t) = (u^1(t), u^2(t)) \]

\[\overline{G}(t, X; u) = G(X) - B(X)u(t) \]

\[\frac{dX}{dt} = G(X) \]

All the tumors follow the ODE model.

Population of the metastases structured in size \(x \) and vascular capacity \(\theta \) density \(\rho(t, x, \theta) \in L^1(\Omega) \).

Balance law:

\[\partial_t \rho + \text{div}(\rho \overline{G}) = 0 \]
Boundary condition. Birth of new metastases

Birth rate of new metastases of parameter $\sigma \in \partial \Omega$ per meta of size x and vascular capacity θ per unit of time: $b(\sigma, x, \theta)$

We assume

- **Independance** between the vascular capacity of the neo-metastasis and the mother-tumour which emitted it

$$b(\sigma, x, \theta) = N(\sigma)\beta(x, \theta)$$

- That the metastases are born with size 1

$$N(\sigma) = N(1, \theta) = \frac{1}{2\Delta \theta} 1_{\theta \in [\theta_0 - \Delta \theta, \theta_0 + \Delta \theta]}$$

We choose:

$$\beta(x, \theta) = mx^\alpha$$

Two sources of new metastases:

- Primary tumor $X_p(t)$ with $\frac{dX_p}{dt} = \overline{G}(X_p) : N(\sigma)\beta(X_p(t))$

- Metastases themselves: $N(\sigma) \int_{\Omega} \beta(x, \theta) \rho(t, x, \theta) dxd\theta$
Metastatic model

\[
\begin{align*}
\text{(E)} \quad
\begin{cases}
\partial_t \rho(u) + \text{div}(\overline{G}(u)\rho(u)) = 0 \\
-\overline{G}(t, \sigma; u) \cdot \nu(\sigma) \rho(t, \sigma; u) = N(\sigma) \left\{ \int_\Omega \beta(X) \rho(t, X; u) dX + \beta(X_p(t; u)) \right\} \\
\rho(0) = \rho^0
\end{cases}
\end{align*}
\]

\[
\overline{G}(t, x, \theta; u) = G(x, \theta) - B(x, \theta)u(t), \quad u(t) = (u^1(t), u^2(t))
\]

Number of metastases: \(\int_\Omega \rho(t, x, \theta) dx \, d\theta \). **Metastatic mass**: \(\int_\Omega x \rho(t, x, \theta) dx \, d\theta \)

- Linear transport equation in dimension 2 with nonlocal boundary condition.
- Theoretical and numerical analysis has been performed
 - B., J. Evol. Equ., 2011
 - B., M2AN, 2011
 - Barbolosi, Benabdallah, Hubert, Verga, Math. Biosc., 2008

- Original idea for a structured population equation for the metastases
Anti-angiogenic therapy

Testing the drugs from Hahnfeldt et al., Cancer Res. 99 (mice data):
- Endostatine 20 mg/kg/day
- Angiostatine 20 mg/kg/day
- TNP-470 30 mg/kg/q.o.d
Combination of cytotoxic and anti-angiogenic therapy

Human parameters. Etoposide (CT)/Bevacizumab (AA) combination. Order of administration?

Bevacizumab D0 Etoposide D8 VS Etoposide D0 Bevacizumab D8

![Tumoral growth](image1)

![Total number of metastases](image2)
In these two first examples, the best protocol/drug is not the same for the primary tumor and for the number of metastases.
A model for metastatic evolution

An optimal control problem for the metastases

Numerical study in a simplified case
Formulation of an optimal control problem

On the primary tumor growth: \(\dot{X}_p(t; u) = G(X_p(t; u)) - B(X_p(t; u))u(t) \)

- Already studied

- Two possible criteria to be minimized for the primary tumor size

\[
J_T(u) = x_p(T; u) \quad \text{and} \quad J_m(u) = \min_{t \in [0, T]} x_p(t; u)
\]

- Toxicity constraints

\[
\mathcal{U}_{ad} = \left\{ u \in (L^\infty(0, T))^2; \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \leq u(t) \leq \left(\begin{array}{c} v_{\text{max}} \\ u_{\text{max}} \end{array} \right) \forall t \text{ and } \int_0^T u(t) dt \leq \left(\begin{array}{c} C_{\text{max}} \\ A_{\text{max}} \end{array} \right) \right\}
\]
Formulation of an optimal control problem

On the primary tumor growth: \(\dot{X}_p(t; u) = G(X_p(t; u)) - B(X_p(t; u))u(t) \)

- Already studied

- Two possible criteria to be minimized for the primary tumor size
 \[J_T(u) = x_p(T; u) \quad \text{and} \quad J_m(u) = \min_{t \in [0,T]} x_p(t; u) \]

- Toxicity constraints
 \[U_{ad} = \left\{ u \in (L^\infty(0, T))^2; \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \leq u(t) \leq \left(\begin{array}{c} v_{\text{max}} \\ u_{\text{max}} \end{array} \right) \forall t \text{ and } \int_0^T u(t) dt \leq \left(\begin{array}{c} c_{\text{max}} \\ a_{\text{max}} \end{array} \right) \right\} \]

On the metastases

\[J(u) = \int_{\Omega} \rho(T, x, \theta; u) dx d\theta \quad \text{and} \quad J_M(u) = \int_{\Omega} x \rho(T, x, \theta; u) dx d\theta \]

- **Total number of metastases**
- **Metastatic mass**
Is there a **difference** in the optimal minimizer u^* between the metastatic and primary tumor criteria?
Existence of an optimal solution

Theorem

Under some regularity assumptions there exists \((u^*, u^*_M) \in \mathcal{U}_{ad}\) such that

\[
J(u^*) \leq J(u), \quad \forall u \in \mathcal{U}_{ad}, \quad J_M(u^*_M) \leq J_M(u), \quad \forall u \in \mathcal{U}_{ad}
\]

The proof is based on the following proposition

Proposition

Under some regularity assumptions if \(\rho(u)\) is the solution of \((E)\), then \(\rho \in W^{1,\infty}(Q)\) and there exists a continuous function \(C\) which can be explicited in terms of \(\|\beta\|_{W^{1,\infty}(\Omega)}, \|N\|_{W^{1,\infty}(\partial \Omega)}, \|G\|_{L^\infty(\Omega)}\) and \(\|B\|_{L^\infty(\Omega)}\) such that, for all \(u \in \mathcal{U}_{ad}\)

\[
\|\rho(u)\|_{W^{1,\infty}(Q)} \leq C(\|u\|_{L^\infty(Q)})
\]
Optimality system for J

In the case of $J(u) = \int_\Omega \rho(T,X;u)\,dX$ and without the source term in the boundary condition

Proposition

Let u^* be a solution of the optimal control problem. We have the following **optimality system**:

\[
\begin{cases}
\partial_t \rho^* + \text{div}(\rho^* \overline{G}(u^*)) = 0 \\
-G \cdot \nu(t,\sigma;u^*)\rho^*(t,\sigma;u^*) = N(\sigma) \{ \int_\Omega \beta(X) \rho^*(t,X;u^*)\,dX + \beta(X_p(t;u^*)) \} \\
\rho^*(0,X;u^*) = \rho^0
\end{cases}
\]

\[
\begin{cases}
-\partial_t p^*(t,X;u^*) - \overline{G}(X;u^*) \nabla p^*(t,X;u^*) - \beta(X) \int_{\partial \Omega} N(\sigma) p^*(t,\sigma)\,d\sigma = 0 \\
p^*(T) = -1.
\end{cases}
\]

\[
\int_0^T \int_\Omega p^* \text{div}(\rho^* B(X) \cdot (\nu - u^*)) \,dX \,dt \leq 0, \quad \forall \nu \in \mathcal{U}_{ad}.
\]
A model for metastatic evolution

An optimal control problem for the metastases

Numerical study in a simplified case
Optima comparison in a two-dimensional case

Administer total given amounts of agents \((C_{\text{max}}, A_{\text{max}})\) from time 0 to times \((t_v, t_u)\) at constant rates \(V = \frac{C_{\text{max}}}{t_v}\) and \(U = \frac{A_{\text{max}}}{t_u}\).

\[U_{\text{ad}} = \{u^1(t) = \frac{C_{\text{max}}}{t_v} \mathbf{1}_{[0,t_v]}(t), \ u^2(t) = \frac{A_{\text{max}}}{t_u} \mathbf{1}_{[0,t_u]}(t), \ \left(\frac{C_{\text{max}}}{v_{\text{max}}}, \frac{A_{\text{max}}}{u_{\text{max}}}\right) \leq (t_v, t_u)\}.\]

\[U_{\text{ad}} \simeq \left[\frac{C_{\text{max}}}{v_{\text{max}}}, T \right] \times \left[\frac{A_{\text{max}}}{u_{\text{max}}}, T \right] = [1, 10] \times [4, 10]\]
Monotherapy cases

AA alone. $C_{max} = 0$

CT alone. $A_{max} = 0$.
Monotherapy cases

- Number of metastases and primary tumor criteria yield different optimal values: strong dose/short time, small dose/large time, nontrivial minimum value

- Metastatic mass gives the same result as final tumor size

- Same qualitative but different quantitative results between CT and AA
CT-AA combination

<table>
<thead>
<tr>
<th>Criterion</th>
<th>J_T</th>
<th>J_m</th>
<th>J</th>
<th>J_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(t_v^, t_u^)$</td>
<td>(9.5, 9.5)</td>
<td>(1, 4)</td>
<td>(1, 5.5)</td>
<td>(10, 9)</td>
</tr>
</tbody>
</table>

- We can regroup J and J_m under the **strong dose/short time** strategy and J_T and J_M under the **low dose/large time** one.
Influence of the presence of a drug on the behavior of the other

Effect of CT on AA

J_T, J and J_M are almost identical but J_m has the reverse behavior

Effect of AA on CT

Drastrical changes for J_T and J_M. J is stable
Conclusion

- Simple model for metastatic evolution, taking into account for the effects of CT and AA therapies
- Difference of the optimal solution between the primary tumor and the metastases.
- Necessity to define precisely the objective(s) to be minimized.

How to cleverly combine tumoral and metastatic reduction?

Use the **metastatic mass** $J_M = \int_\Omega x \rho(t, x, \theta) dx d\theta$?

Linear combination between a tumoral criterion and the number of metastases?

Perspectives

- Numerical method for the infinite-dimensional optimal control problem on the metastases (PDE)
- Further study of the theoretical optimality system
Thank you for your attention!
Thematic school - Present challenges of mathematics in oncology and biology of cancer: Modeling and mathematical analysis

CIRM, Marseille France
March 19-23, 2012

Organizing committee:
A. Benabdallah
S. Benzekry
G. Chapuisat
Y. Dermenjian
F. Hubert
M. Gonzales Burgos

Scientific committee:
N. André
D. Barbolosi
N. Bellomo
J. Clairambault
T. Colin
C. Falcoz

Mini course:
D. Bennequin
H. M. Byrne
J. Ciccolini
A. D’Onofrio
B. Perthame
O. Saut
J. P. Zubelli

➢ Special session on medical challenges
➢ All the infos on: http://www.latp.univ-mrs.fr/mcc
➢ Contacts: mcc@latp.univ-mrs.fr
References

Benzekry, S. *Mathematical and numerical analysis of the anti-angiogenic therapy in metastatic cancers.* to appear in M2AN, 2011.

Confrontation with a study of Koscielny, Tubiana & al.

- 2648 patients treated for breast cancer at the IGR between 1954 and 1972.
- Proportion of patients which develop at least one visible metastasis in terms of the initial tumor size.

<table>
<thead>
<tr>
<th>Primary tumor size</th>
<th>% computed by our model</th>
<th>% observed by Koscielny</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 2.5 cm</td>
<td>25.5%</td>
<td>27%</td>
</tr>
<tr>
<td>2.5 - 3.5 cm</td>
<td>44.25%</td>
<td>42%</td>
</tr>
<tr>
<td>3.5 - 4.5 cm</td>
<td>60.5%</td>
<td>56.7%</td>
</tr>
<tr>
<td>4.5 - 5.5 cm</td>
<td>68.6%</td>
<td>66.5%</td>
</tr>
<tr>
<td>5.5 - 6.5 cm</td>
<td>75.5%</td>
<td>72.8%</td>
</tr>
<tr>
<td>6.5 - 7.5 cm</td>
<td>78.25%</td>
<td>83.8%</td>
</tr>
<tr>
<td>7.5 - 8.5 cm</td>
<td>83.25%</td>
<td>81.3%</td>
</tr>
<tr>
<td>>8.5 cm</td>
<td>89.25%</td>
<td>92%</td>
</tr>
</tbody>
</table>

Breast cancer: Relationship between the size of the primary tumor and the probability of metastatic dissemination

Koscielny, Tubiana & al. (1984)

The difficulties of use of the model

- Estimate the parameters.
 - Work in progress: Use ana-pathological informations on the primary tumor and homology derived tools to obtain good covariables for the estimation of m.

- Model validation on mice in progress (ANR MEMOREX_PK).
CT-AA combination

Graphs of $t_v \mapsto \arg\min_{t_u} J_x(t_u, t_v)$
- For J_m: **synchronization effect**
- J, J_M and J_T are stable

Graphs of $t_u \mapsto \arg\min_{t_v} J_x(t_u, t_v)$
- For J_T: change in the optimal value t_v^*.
- J, J_M and J_m are stable