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Metastases

Iwata et al., 2000

Contrast-enhanced X-ray computed tomographies of the liver with
multiple metastatic tumors. Interval : 127 days.

+ some of the metastases are not visible.



Clinical problematics

“Metastasis is the main cause of death in a cancer disease”
Weinberg, 2006

• Micrometastases (size < 107 cells) invisible with imaging
techniques. How to predict their development and
administer adjuvant therapy (after surgery) without seeing
anything?

• What is the best scheduling for : chemotherapy (CT),
anti-angiogenics (AA), CT + AA?

• Metastatic cancers are systemic diseases which have to be
thought at the organism scale.



Why mathematical models?

• Mathematical description of the biological process

⇒ Medical prognosis tool

⇒ Control of this process. Therapy optimization
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A mathematical model with size structure Iwata & al., 2000

• Population of metastases structured in size V described by a
density ρ(t,V ). Number of mets between V1 and V2 =∫ V2

V1
ρ(t,V )dV
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∂tρ(t,V ) + ∂V (g(V )ρ(t,V )) = 0
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• Population of metastases structured in size V described by a
density ρ(t,V ). Number of mets between V1 and V2 =∫ V2

V1
ρ(t,V )dV

• Tumors grow in size with gompertzian rate g(V ) = aV ln
(
K
V

)
⇒ Conservation of the number when tumors grow

∂tρ(t,V ) + ∂V (g(V )ρ(t,V )) = 0

• Spreading of new metastases with emission rate β(V ) = mV α

α = fractal dimension of the vasculature, m = metastatic
agressiveness

⇒ Entering flux of new metastases

g(V0)ρ(t,V0) =

∫ b

1
β(V )ρ(t,V ) dV + β(Vp(t))

• Primary tumor growth V ′p = g(Vp)



Fit to a patient data Iwata & al., 2000



Confrontation with clinical data D. Barbolosi, F. Verga

Study of Koscielny & al., 1984

• 2648 patients treated for breast cancer at the IGR

• Proportion of patients which develop at least one visible
metastasis in terms of the initial tumor size.
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Study of Koscielny & al., 1984

• 2648 patients treated for breast cancer at the IGR

• Proportion of patients which develop at least one visible
metastasis in terms of the initial tumor size.

One patient = One set of parameters (a,K ,m, α)

Primary tumor size % computed by our model % observed by Koscielny

1 - 2.5 cm 25.5% 27%
2.5 - 3.5 cm 44.25% 42%
3.5 - 4.5 cm 60.5% 56.7%
4.5 - 5.5 cm 68.6% 66.5%
5.5 - 6.5 cm 75.5% 72.8%
6.5 - 7.5 cm 78.25% 83.8%
7.5 - 8.5 cm 83.25% 81.3%
>8.5 cm 89.25% 92%
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• 2648 patients treated for breast cancer at the IGR

• Proportion of patients which develop at least one visible
metastasis in terms of the initial tumor size.

One patient = One set of parameters (a,K ,m, α)
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1 - 2.5 cm 25.5% 27%
2.5 - 3.5 cm 44.25% 42%
3.5 - 4.5 cm 60.5% 56.7%
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7.5 - 8.5 cm 83.25% 81.3%
>8.5 cm 89.25% 92%

But for clinical use of the model we need to estimate the
parameters values without data on the metastases!!



Chemotherapy Barbolosi, Benabdallah, Hubert, Verga

Chemotherapy = reduction of the growth speed
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−C (t)V
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Chemotherapy = reduction of the growth speed

g(V ) = aV ln

(
K

V

)
−C (t)V

Toward taking into account inter-individual variability
• Simulation of 10 virtual patients with breast cancer
• Chemotherapy : 6 cycles of 21 days Viens & al., 2001

• Number of visible metastases (> 108 cel.) 5 years after the
end of the treatment.

Patient m # metastases Patient m # metastases

n◦1 1.7× 10−8 0 n◦6 7.0× 10−8 0
n◦2 1.9× 10−8 0 n◦7 1.3× 10−7 1
n◦3 2.7× 10−8 0 n◦8 2.7× 10−7 2
n◦4 5.0× 10−8 0 n◦9 4.0× 10−7 3
n◦5 6.1× 10−8 0 n◦10 6.1× 10−7 4



What about angiogenesis and

anti-angiogenic treatments?
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Tumoral growth under angiogenic control Hahnfeldt et al., 1999
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Consider K as a variable
representing the vasculature
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Stimulation by the tumor

− dV
2
3K︸ ︷︷ ︸

Inhibition
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dV

dt
= aV ln
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K

V
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− f C (t)V︸ ︷︷ ︸

cytotoxic
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dt
= cV − dV
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3K− e A(t)K︸ ︷︷ ︸
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Transport equation for the metastases population

Ω = ]V0, b[2 , b =
( c

d

) 3
2

G =

(
aV ln

(
K
V

)
cV − dV

2
3 K

)

G = G − Bu(t)

u(t) = (C(t),A(t))

ρ(t,V ,K)

Conservation law
∂tρ+ div(ρG) = 0



Boundary condition. Birth of new metastases

Birth rate of new metastases of parameter σ ∈ ∂Ω per meta of
size V and carrying capacity K per unit of time : b(σ,V ,K )

We assume that the metastases are born with size 1 cell (V0) and
same carrying capacity K0

b(σ,V ,K ) = δσ=(V0,K0)β(V ,K )

We take :
β(V ,K ) = mV α



Metastatic model with angiogenesis B., 2011


∂tρ+ div(Gρ) = 0

−G (t, σ) · ν(σ)ρ(t, σ) = δσ=(V0,K0)

{∫
Ω β(V )ρ(t,V ,K )dVdK + β(Vp(t))

}
ρ(0) = ρ0

Number of mets =
∫

Ω ρ(t,V ,K )dVdK

Metastatic mass =
∫

Ω V ρ(t,V ,K )dVdK

• Renewal equation in dimension 2 for the trait X = (V ,K )

• Theoretical and numerical analysis has been performed :
well-posedness, regularity, asymptotic behavior, error estimate

B., JEE, 2011

B., M2AN, 2012



Simulation of cancer history



Simulation of cancer history. Growth curves

Number of metastases Metastatic mass



Surgery and development of the metastatic population



Metastatic population. Growth curves

Number of metastases

ρ(t,V ,K ) ∼Ψ Ceλ0tΦ(V ,K )

Mean size

V (t) =
Mass

Number



Visible metastases VS Total



Anti-angiogenic monotherapy

Testing the drugs from Hahnfeldt et al., 99 (mice data)

Endostatin 20 mg/kg/day, Angiostatin 20 mg/kg/day, TNP-470
30 mg/kg/q.o.d

Primary tumor Metastases



CT/AA combination. Order of administration?

Etoposide (CT)/Bevacizumab (AA) combination

Bevacizumab D0 Etoposide D8 VS Etoposide D0 Bevacizumab D8

Primary tumor Metastases



In these two first examples, the best

protocol/drug is not the same for

the primary tumor and for

the number of metastases.



Summary

• We have established a mathematical model for the
development of metastases

• Takes into account: proliferation, angiogenesis, metastatic
spreading

• Therapies: surgery, chemotherapy, anti-angiogenic therapy

• Best therapy can differ between primary tumor and
metastases



A first model with size structure

Angiogenesis
Modeling
Simulations

Scheduling optimization
Formulation of an optimal control problem
Concentrating VS diluting the dose

A model for low dose anti-angiogenic chemotherapy



On the primary tumor

Xp := (Vp,Kp), Ẋp(t; u) = G (Xp)− B(Xp)u(t)

Two possible criteria to be minimized for the primary tumor size

JT (u) = Vp(T ; u) and Jm(u) = min
t∈[0T ]

Vp(t; u)



On the primary tumor

Xp := (Vp,Kp), Ẋp(t; u) = G (Xp)− B(Xp)u(t)

Two possible criteria to be minimized for the primary tumor size

JT (u) = Vp(T ; u) and Jm(u) = min
t∈[0T ]

Vp(t; u)

Toxicity constraints

Uad =

{(
0
0

)
≤ u(t) ≤

(
cmax

amax

)
∀t and

∫ T

0
u(t)dt ≤

(
Cmax

Amax

)}
Optimal control problem : find u∗ ∈ Uad such that
Jm(u∗) ≤ Jm(u) for all u ∈ Uad , studied in

U. Ledzewicz and H. Schättler, SIAM J. on Control and Optimization, 2007

A. d’Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, Math. Biosc., 2009

A. Ergun, K. Camphausen, L. M. Wein, Bull. Math. Biol., 2003



On the metastases

• Two new criteria

J(u) =

∫
Ω
ρ(T ,V ,K ; u)dVdK︸ ︷︷ ︸

Total number of metastases

JM(u) =

∫
Ω
V ρ(T ,V ,K ; u)dVdK︸ ︷︷ ︸

Metastatic mass

• Optimal control problem

Find (u∗, u∗M) ∈ Uad such that

J(u∗) = minu∈Uad J(u) and JM(u∗M) = minu∈Uad JM(u)



Is there a difference in the optimal

minimizer between the metastatic

and primary tumor criteria?



Concentrating VS diluting the dose

Simpler situation: constant administration then 0 Ledzewicz & al., 10

Same total AUC = (Cmax ,Amax)
Variable = durations = (tC , tA)

Drug administration Primary tumor



AA monotherapy. Primary tumor

Growth time curves Criteria

• Better short term tumoral reduction Jm with MTD

• Better long term tumoral reduction JT with metronomic

(for these values of parameters and initial conditions)



AA monotherapy. Metastases

Time curves Criteria

• Nontrivial optimal scheduling for the number of mets

• Metastatic mass JM is qualitatively the same as tumor size JT



Quantification of the effect of scheduling optimization

Criterion Min size End size Nb mets Mass
Jm JT J JM

Min /Max
reduction (%)

-19/0 +10/+70 +132/+138 +33/+154

• The scheduling has a strong impact on the tumoral criteria
and on the metastatic mass

• Impact on the number of metastases is much smaller



CT monotherapy

Primary tumor Metastases

• Optimal strategy for the number of metastases differs from
AA monotherapy. Now MTD

• Same behavior for the other criteria



CT monotherapy. Influence of metastatic agressiveness m

For small value of m, the metastases are mostly spread by the
primary tumor = m

∫ T
0 V α

p (s)ds

m=0.001 m=100

• Change in the optimal strategy for the number of mets

• Whatever the metastatic agressiveness of the cancer, same
optimal strategy for the mass, i.e. metronomic



CT-AA combination

Tumor size JT

Minimal tumor size Jm

Number of metastases J

Metastatic mass JM

Criterion JT Jm J JM
(t∗C , t

∗
A) (9.5, 9.5) (4, 4) (4, 6.5) (9.5, 9.5)



Summary

• Scheduling is important

• Number of metastases and primary tumor criteria yield
different optimal strategies : strong dose/short time
(Maximum Tolerate Dose), small dose/large time
(metronomic), nontrivial minimum value

• Metastatic mass gives the same optimal strategy as final
tumor size : it prefers a situation with more but smaller
metastases (rather than less but bigger). This happends
independently of the value of the spreading rate m.
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So far

So far the presented models did not take into account for three
important features:

• Resistance

• Pharmacokinetics/Pharmacodynamics

• (Toxicity)



The paradigm of metronomic schedules

• Administer the chemotherapy with low doses but more
frequent

• Limit the toxicities

• Anti-angiogenic effect of these therapies, with less
resistances

• In fine, make the disease become chronic



Modeling B., André & al., MMNP 2011

• Tumoral growth

V̇ = aV ln

(
K

V

)
−fC1(t)V

K̇ = cV − dV
2
3K−gC2(t)K

• PK and interface model for the effective concentrations Meille&

al., 2008

ċ1(t) = −kec1(t) + k12(c1(t)− c2(t))− k13(c1(t)− c3(t)) + I (t)
V

ċ2(t) = k21(c1(t)− c2(t))
ċ3(t) = k31(c1(t)− c3(t))

Ċ (t) = −αI e
−βIC(t)C (t) + c1(t)

• Resistances only for the action on cancerous cells :

C1(t) = C (t)e−R
∫ t

0 C(s)ds , C2(t) = C (t)



Metronomic CT B., André & al., MMNP 2011

Example of metronomic administration for breast cancer

• MTD : DTX 100 mg at day 0. 21 days cycle

• Metronomic for DTX : 10 mg per day, every day

Tumoral growth Carrying capacity Metastases

Long term advantage of metronomic therapy.



Dosis 8mg

If the dosis of the drug is too low (< 8 mg), the treatment does
not suppress tumor growth



Conclusion

• Systemic model for metastatic growth taking into account
all the fundamental aspects of a cancer disease : proliferation,
angiogenesis, metastasis

• Could be used to predict the development of the (micro
and visible) metastases, in the clinic. But we have to find a
way to estimate the metastatic parameters m and α with only
primary tumor data.

• Simulation of CT and AA therapies (and surgery)

• Theoretical study of the impact of scheduling

• Treatment of metastases 6= treatment of primary tumor

• A mathematical model able to describe long term efficacy of
metronomic scheduling.



Thank You for listening!
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Université Aix-Marseille

• Nicolas André MD, PhD
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