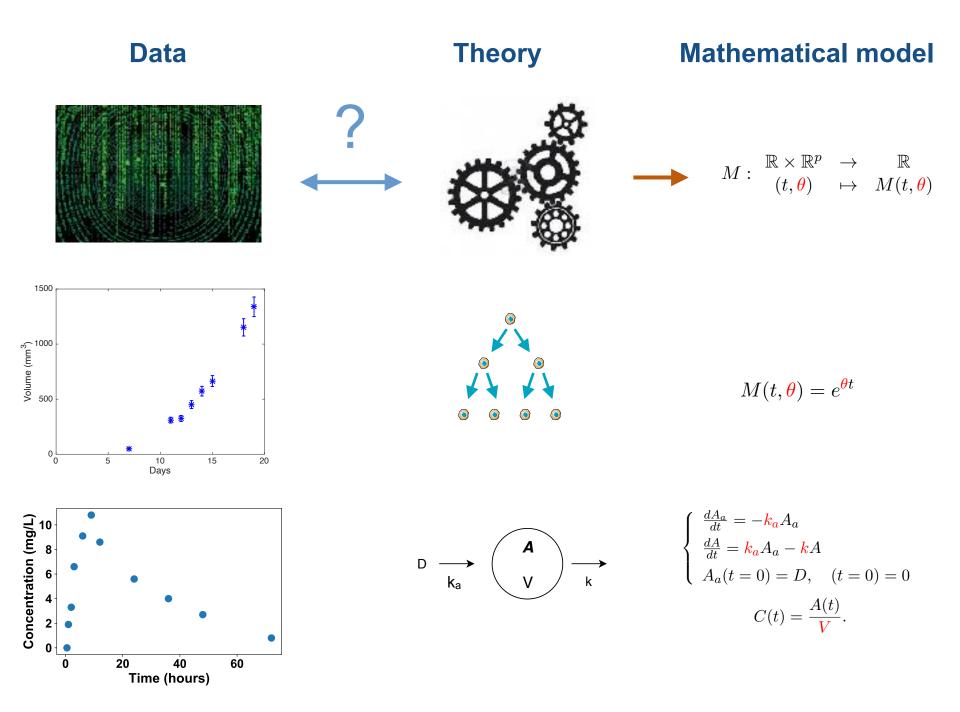


Nonlinear regression

S. Benzekry

Master 2 Pharmacocinétique

1. Fitting a model



1.1 Fitting a *linear* model

Linear regression

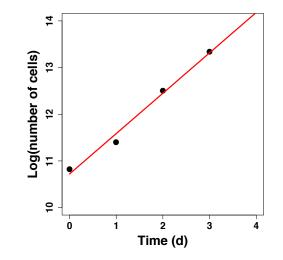
$$y = \theta_0 + \theta_1 t + \varepsilon$$

Question: what is the « best » linear approximation of y ?

 $\thickapprox \quad \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_n \end{pmatrix} \cdot \begin{pmatrix} \theta_0 \\ \theta_1 \end{pmatrix} \quad -$

2

M rectangular no solution



$$\Leftrightarrow y = M \cdot \theta$$

$$\times M^{T} (\in M_{2,n}) \left(\begin{array}{c} \Rightarrow M^{T} y = M^{T} M \cdot \theta \\ M_{2,n} \cdot M_{n,1} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,n} \cdot M_{n,2} \cdot M_{2,1} \\ M_{2,1} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2} \cdot M_{2,1} \\ M_{2,1} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2} \cdot M_{2,1} \\ M_{2,1} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2} \cdot M_{2,1} \\ M_{2,1} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2} \cdot M_{2,1} \\ \xrightarrow{} M_{2,1} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2} \cdot M_{2,1} \\ \xrightarrow{} M_{2,1} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2} \cdot M_{2,1} \\ \xrightarrow{} M_{2,1} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2} \cdot M_{2,1} \\ \xrightarrow{} M_{2,1} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2} \cdot M_{2,1} \\ \xrightarrow{} M_{2,1} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2} \cdot M_{2,1} \\ \xrightarrow{} M_{2,1} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2} \cdot M_{2,1} \\ \xrightarrow{} M_{2,1} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2} \cdot M_{2,1} \\ \xrightarrow{} M_{2,1} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2} \cdot M_{2,1} \\ \xrightarrow{} M_{2,1} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2} \cdot M_{2,1} \\ \xrightarrow{} M_{2,1} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2} \cdot M_{2,1} \\ \xrightarrow{} M_{2,1} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2} \cdot M_{2,1} \\ \xrightarrow{} M_{2,1} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2} \cdot M_{2,1} \\ \xrightarrow{} M_{2,1} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2} \cdot M_{2,1} \\ \xrightarrow{} M_{2,1} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2} \cdot M_{2,1} \\ \xrightarrow{} M_{2,1} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2} \cdot M_{2,1} \\ \xrightarrow{} M_{2,1} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2} \cdot M_{2,1} \\ \xrightarrow{} M_{2,2} \cdot M_{2,1} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2} \cdot M_{2,1} \\ \xrightarrow{} M_{2,2} \cdot M_{2,1} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2} \cdot M_{2,2} \\ \xrightarrow{} M_{2,2} \cdot M_{2,2} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2} \cdot M_{2,2} \\ \xrightarrow{} M_{2,2} \cdot M_{2,2} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2} \cdot M_{2,2} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2} \cdot M_{2,2} \\ \xrightarrow{} M_{2,2} \cdot M_{2,2} \end{array} \right) \left(\begin{array}{c} \xrightarrow{} M_{2,2}$$

one unique solution

(if the square matrix $M^T M$ is invertible)

 $\hat{\boldsymbol{\theta}} = \left(\boldsymbol{M}^T \boldsymbol{M}\right)^{-1} \boldsymbol{M}^T \boldsymbol{y}$

1.2 General theory

Formalism

• **Observations**: *n* couples of points (t_j, y_j) , with $y_j \in \mathbb{R}$ (or \mathbb{R}^m).

We will denote $y = (y_1, \dots, y_n) \in \mathbb{R}^n$ and $t = (t_1, \dots, t_n)$.

• Structural model: a function

$$M: \begin{array}{ccc} \mathbb{R} \times \mathbb{R}^p & \to & \mathbb{R} \\ (t, \theta) & \mapsto & M(t, \theta) \end{array}$$

• The (unknown) vector of parameters $\theta \in \mathbb{R}^p$

Goal = find θ

Statistical model

$$y_j = M(t_j; \theta^*) + e_j$$

- « True » parameter θ^*
- $e_i = \text{error} = \text{measurement error} + \text{structural error}$
- See (y_1, \dots, y_n) as realisations of random variables

$$Y_{j}, \varepsilon_{j} = r.v.$$

$$Y_{j}, \varepsilon_{j} = r.v.$$

$$y_{j}, e_{j} = realizations$$

- (y_1, \dots, y_n) = sample with probability density function $p(y | \theta^*)$
- An estimator of θ^* is a random variable function of *Y*, denoted $\hat{\theta}$:

$$\hat{\theta} = h(Y_1, \cdots, Y_n)$$

Linear least-squares: statistical properties

 $Y = M\theta^* + \varepsilon$

$$\hat{\theta}_{LS} = \underset{\theta \in \mathbb{R}^{p}}{\operatorname{argmin}} \left\| Y - M\theta \right\|^{2} \Leftrightarrow \hat{\theta}_{LS} = \left(M^{T}M \right)^{-1} M^{T}Y$$

Proposition: Assume that $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$, then $\hat{\theta}_{LS} \sim \mathcal{N}(\hat{\theta}^*, \sigma^2 (M^T M)^{-1})$

From this, standard errors and confidence intervals can be computed on the parameter estimates

$$se\left(\hat{\theta}_{LS,p}\right) = s\sqrt{\left(M^{T}M\right)_{p,p}^{-1}} \qquad IC_{\alpha}\left(\theta_{LS,p}\right) = \theta^{*} \pm t_{n-p}^{\alpha/2} s\sqrt{\left(M^{T}M\right)_{p,p}^{-1}} \qquad s^{2} = \frac{1}{n-p} \left\|y - M\hat{\theta}_{LS}\right\|^{2}$$

Statistical test for the model parameters

$$\hat{\theta} \sim \mathcal{N}\left(\hat{\theta^*}, \sigma^2 \left(M^T M\right)^{-1}\right)$$

For
$$k = 1, 2..., p$$
 $t_k = \frac{\theta_k - \theta_k^*}{se_k}$ t-distribution with $n - p$ degrees of freedom

 \implies t-test (Wald test)

$$H_0$$
 : « $\beta_k = 0$ » versus H_1 : « $\beta_k \neq 0$ »

Under the null hypothesis, $t_{stat} = \frac{\hat{\beta}_k}{se_k}$ follows a t-distribution with n - d degrees of freedom

p-value:

$$\mathbb{P}\left(\left|t_{n-p}\right| \ge t_{stat}\right) = 2\left(1 - \mathbb{P}\left(t_{n-p} \le t_{stat}\right)\right)$$

Nonlinear regression: least-squares

 $\text{Linearization: } M(t,\theta) = M(t,\theta^*) + J \cdot (\theta - \theta^*) + o (\theta - \theta^*), \quad J = D_{\theta} M(t,\theta^*)$

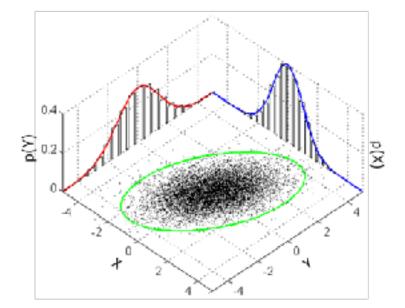
Proposition: Assume $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$. Then, for large *n*, approximately $\hat{\theta}_{LS} \sim \mathcal{N}(\hat{\theta^*}, \sigma^2 (J^T J)^{-1})$

\Rightarrow standard errors, confidence intervals

Sensitivity matrix

$$J = D_{\theta}M(t,\hat{\theta}) = \begin{pmatrix} \frac{\partial M}{\partial \theta_{1}} \left(t_{1},\hat{\theta}\right) & \cdots & \frac{\partial M}{\partial \theta_{p}} \left(t_{1},\hat{\theta}\right) \\ \vdots & \ddots & \vdots \\ \frac{\partial M}{\partial \theta_{1}} \left(t_{n},\hat{\theta}\right) & \cdots & \frac{\partial M}{\partial \theta_{p}} \left(t_{n},\hat{\theta}\right) \end{pmatrix} \qquad var\left(\hat{\theta}_{LS}\right) = \sigma^{2} \left(J^{T}J\right)^{-1}$$

- $J^T J$ is a $p \times p$ symmetric matrix
- It is invertible if and only if rank(J) = p
- Column k of $J=0 \Leftrightarrow M(t,\hat{\theta})$ does not depend on θ_k
- Line *i* of $J = 0 \Leftrightarrow M(t_i, \hat{\theta})$ does not depend on θ



Nonlinear regression: Likelihood maximization

$$Y = M(t; \theta^*) + \varepsilon$$

The likelihood is defined by

$$L(\theta) = p(y_1, \dots, y_n | \theta) = \prod_{j=1}^n p(y_j | \theta)$$

It is the probability to observe *y* if the parameter is θ .

The maximum likelihood estimator (MLE) is the value of θ that maximizes the likelihood

 $\hat{\theta}_{MV} = \underset{\theta}{\operatorname{argmax}} L(\theta)$

Asymptotic properties of the MLE

Proposition:

Under regularity assumptions on L, when $n \to +\infty$

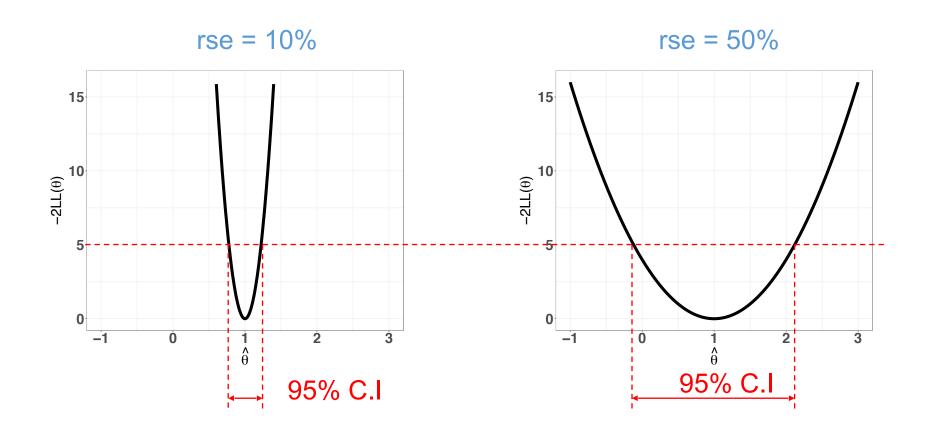
- 1. $\hat{\theta}_{MV} \longrightarrow \theta^*$ (consistency)
- 2. $\hat{\theta}_{MV}$ is asymptotically of minimal variance (it reaches the Cramér-Rao bound):

$$\sqrt{n}\left(\hat{\theta}_{MV} - \theta^*\right) \rightharpoonup \mathcal{N}\left(0, I_{\theta^*}^{-1}\right)$$

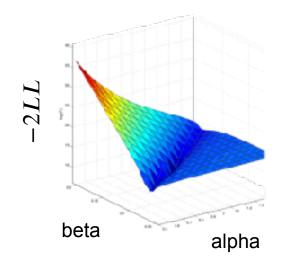
where I_{θ^*} is the Fisher information matrix

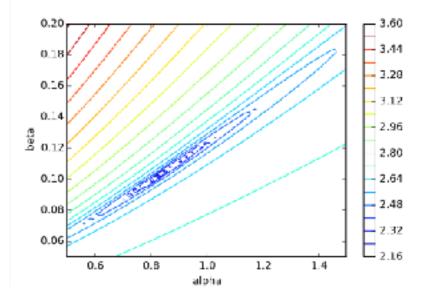
$$\left(I_{\theta^*}\right)_{j,k} = \mathbb{E}\left[\left\{\frac{\partial \log(p(Y|\theta^*))}{\partial \theta_j}\right\} \left\{\frac{\partial \log(p(Y|\theta^*))}{\partial \theta_k}\right\}\right] = \mathbb{E}\left[-\left(\frac{\partial^2 \log\left(p\left(Y|\theta^*\right)\right)}{\partial \theta_j \partial \theta_k}\right)\right].$$

Precision of the estimates

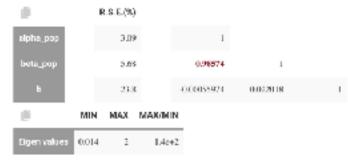


Correlation between estimates





Correlation matrix of the estimates



small r.s.e on alpha and beta, but large correlation

MLE: normal errors

$$Y_j = M\left(t_j; \theta^*\right) + \varepsilon_j, \quad \varepsilon_j \sim \mathcal{N}\left(0, \sigma\right)$$

$$p(y_j \mid \theta, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{\left(y_j - M(t_j, \theta)\right)^2}{2\sigma^2}}, \quad L(\theta, \sigma) = \frac{1}{\left(\sigma\sqrt{2\pi}\right)^n} e^{-\frac{\left\|y - M(t, \theta)\right\|^2}{2\sigma^2}}$$

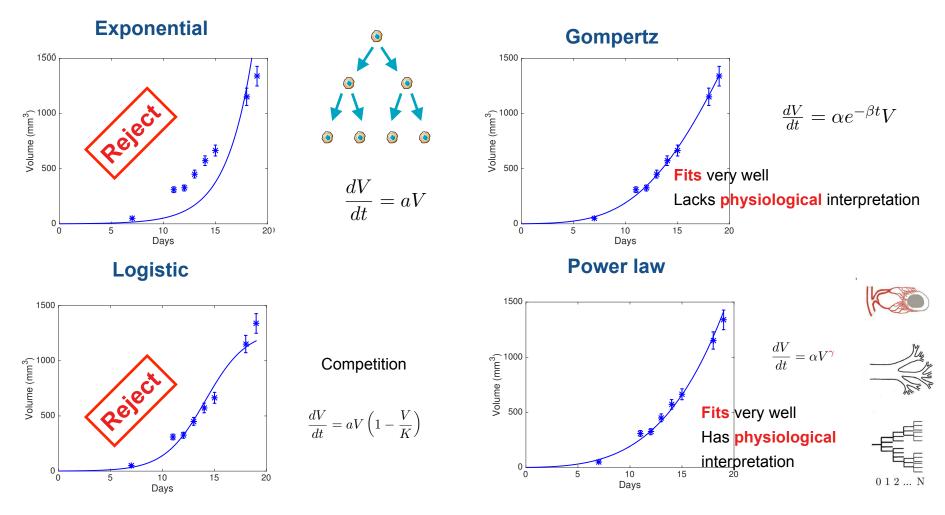
 $\text{Maximize } L(\theta, \sigma) \Leftrightarrow \text{minimize } F(\theta, \sigma) = -\log \left(L(\theta, \sigma) \right)$

$$F(\theta, \sigma) = n \log \left(\sigma \sqrt{2\pi}\right) + \frac{\left\|y - M(t, \theta)\right\|^2}{2\sigma^2}$$
$$\frac{\partial F}{\partial \sigma}\left(\hat{\theta}, \hat{\sigma}\right) = 0 \Rightarrow \hat{\sigma} = \frac{1}{n} \left\|y - M(t, \hat{\theta})\right\|^2$$
$$\Rightarrow \hat{\theta} = \underset{\theta}{\operatorname{argmin}} \left\|y - M(t, \theta)\right\|^2$$

Maximum likelihood ⇔ Least-squares

Application: tumor growth

What are **minimal** biological processes able to recover the **kinetics** of (experimental) tumor growth?



Benzekry et al., PloS Comp Biol, 2014

Goodness of fit metrics

Sum of Squared Errors

Akaike Information Criterion

$$SSE^i = \sum_{j=1}^{n^i} \left(\frac{V^i_j - V(t^i_j, \hat{\theta}^i)}{\hat{\sigma}^i_j} \right)^2$$

$$AIC^i = -2l(\hat{\theta}^i) + 2p$$

number of parameters

Model	SSE	AIC	RMSE	R2	$\mathbf{p} > 0.05$	#
Power law	0.164(0.0158 - 0.646)[1]	-18.4(-43.2 - 1.63)[1]	0.415(0.145 - 0.899)[1]	0.97(0.801 - 0.998)[1]	100	2
Gompertz	0.176(0.019 - 0.613)[2]	-16.9(-48.2 - 1.1)[2]	0.433(0.156 - 0.875)[2]	0.971(0.828 - 0.997)[2]	100	2
Logistic	0.404(0.0869 - 0.85)[3]	-5.41(-18.4 - 3.88)[3]	0.665(0.331 - 1)[3]	0.908(0.712 - 0.989)[3]	100	2
Exponential	1.9(0.31 - 3.56)[4]	10.7(-5.38 - 23.1)[4]	1.4(0.595 - 1.95)[4]	0.69(0.454 - 0.944)[4]	15	1

Root Mean Squared Errors

R²

$$RMSE^{i} = \sqrt{\frac{1}{n-p}SSE^{i}} \qquad \qquad R^{2,j} = 1 - \frac{\sum_{j} \left(V_{j}^{i} - V(t_{j}^{i};\hat{\theta}^{i})\right)^{2}}{\sum_{j} \left(V_{j}^{i} - \overline{V^{i}}\right)^{2}}$$

Parameter values and identifiability

Model	Par.	Unit	Median value (CV)	NSE (%) (CV)
Power law	$lpha \gamma$	$\operatorname{mm}^{3(1-\gamma)} \cdot \operatorname{day}^{-1}$ -	$\begin{array}{c} 0.886 \; (30.8) \\ 0.788 \; (7.56) \end{array}$	$8.17 (52.5) \\ 2.28 (58.6)$
Gompertz	$rac{lpha_0}{eta}$	day^{-1} day^{-1}	$\begin{array}{c} 1.68 \; (23.5) \\ 0.0703 \; (28) \end{array}$	$\begin{array}{c} 6.11 \ (82.9) \\ 8.35 \ (92.9) \end{array}$
Logistic	a K	$ m day^{-1} m mm^3$	$\begin{array}{c} 0.474 \ (13.3) \\ 1.92\mathrm{e}{+03} \ (36.7) \end{array}$	$2.93 (23.3) \\15.8 (28.7)$
Exponential	a	day^{-1}	0.356(12.9)	2.53 (19.4)
Generalized log	jistic .	$\begin{array}{ccc} a & [day^{-1}] \\ K & [mm^3] \\ \alpha & - \end{array}$	$\begin{array}{c} 2555 \ (148) \\ 4378 \ (307) \\ 0.0001413 \ (199) \end{array}$	$2.36e+05 (137) \\ 165 (220) \\ 2.36e+05 (137)$

 $se\left(\hat{\theta}^{k}\right) = \sqrt{\hat{\sigma}^{2}\left(J\cdot J^{T}\right)_{k.k}}$

 $\hat{\theta} \sim \mathcal{N}\left(\theta^*, \hat{\sigma}^2 \left(J \cdot J^T\right)^{-1}\right)$

Likelihood ratio test

Comparing two models

$$Y = M_1(t; \theta_1) + \varepsilon_1 \Longrightarrow L_1(\theta_1, y) \qquad \qquad Y = M_2(t; \theta_2) + \varepsilon_2 \Longrightarrow L_2(\theta_2, y)$$

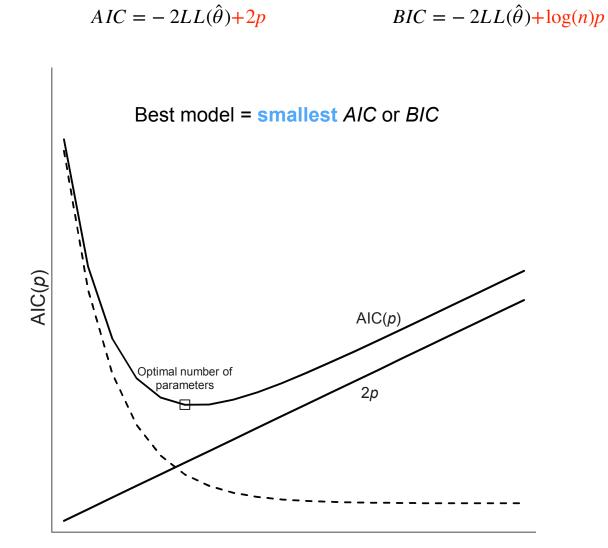
• Models have to be nested: $\theta_1 \subset \theta_2$ (ex: M_1 = one compartment, M_2 = two compartments)

$$LRT_{stat} = 2\left(LL_2\left(\hat{\theta}_2\right) - LL_1\left(\hat{\theta}_1\right)\right)$$
$$= n \log\left(\frac{\sum_{j=1}^n \left(y_j - M_1(t_j, \theta_1)\right)^2}{\sum_{j=1}^n \left(y_j - M_2(t_j, \theta_2)\right)^2}\right)$$

is approximated by a χ^2 distribution with $p_2 - p_1$ degrees of freedom

Null hypothesis H_0 = « Model M_1 (small model) is better »

Information criteria



Confidence interval and prediction interval

$$Y = M(t;\theta) + \varepsilon$$

- Prediction at new time t_{new} $\widehat{M_{new}} = M(t_{new}, \hat{\theta})$
- Uncertainty on parameter estimate $\hat{\theta} \implies$ confidence interval on $\widehat{M_{new}}$

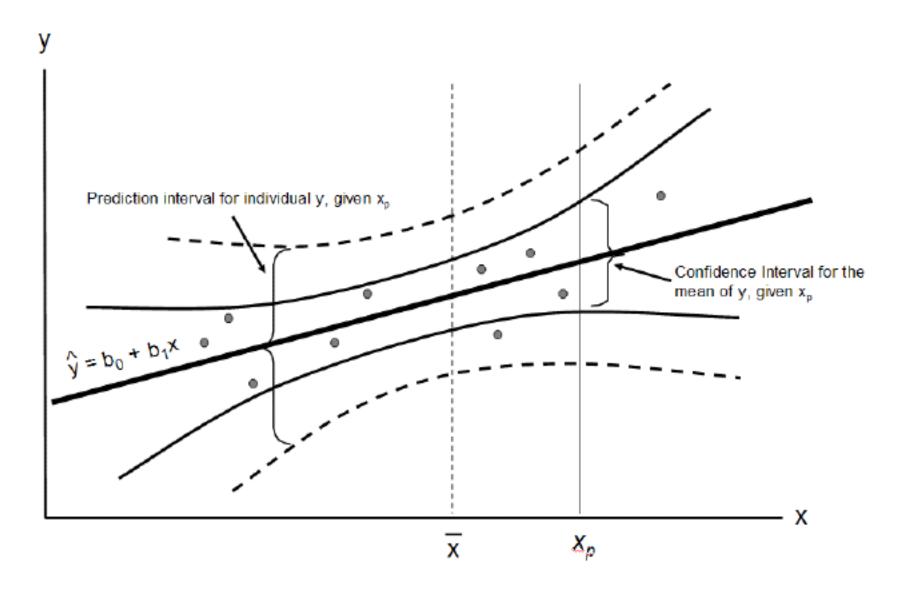
$$\widehat{M_{new}} \sim \mathcal{N}\left(M_{new}, Var\left(\widehat{M_{new}}\right)\right)$$

- Uncertainty on parameter estimate $\hat{ heta}$
- + uncertainty on observation ε (e.g. measurement error) \implies prediction interval on M_{new}

$$y_{new} = M_{new} + \varepsilon$$

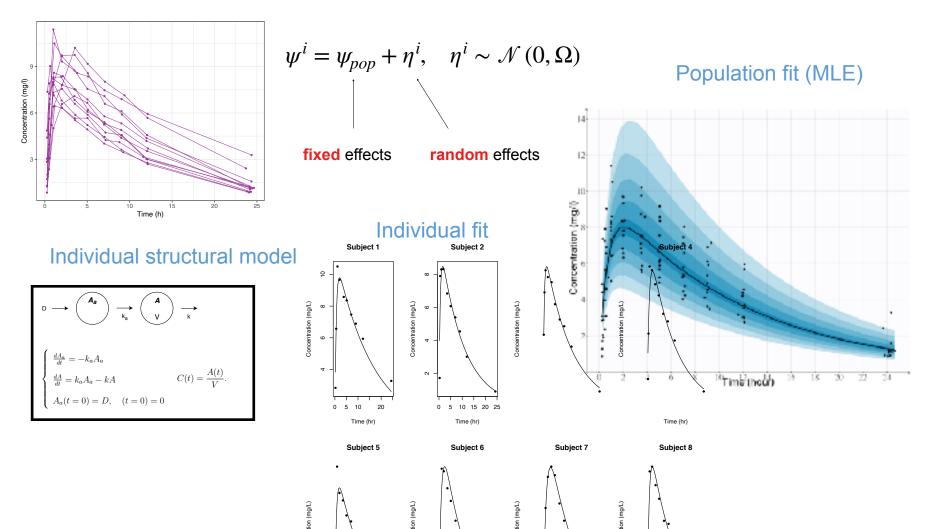
$$y_{new} \sim \mathcal{N}\left(\widehat{M_{new}}, Var\left(\widehat{M_{new}}\right) + \sigma^2 I\right)$$

Confidence interval vs prediction interval

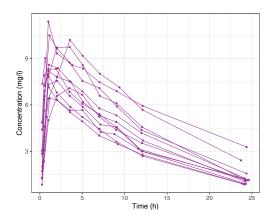


Mixed-effects modeling

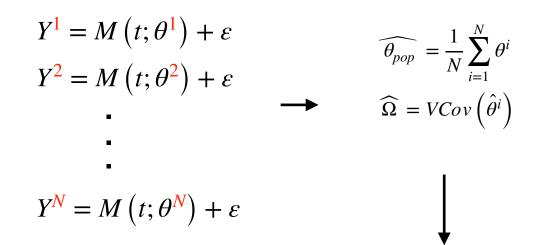
Population data



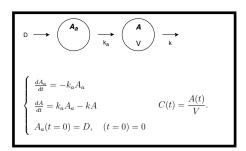
Population modeling: the two-steps approach



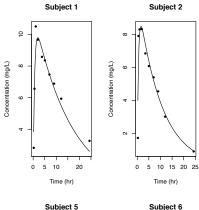
Population data

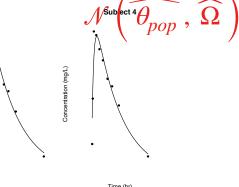


Individual structural model



Individual fit





Subject 5

Δ

Concentration (mg/L)

Subject 8

Subject 7

References

- Course « Statistics in Action with R » by Marc Lavielle http://sia.webpopix.org/index.html
- Seber, G. A., & Wild, C. J. (2003). Nonlinear regression. Hoboken (NJ): Wiley-Interscience.