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1. Fitting a model
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1. Load the data and launch Monolix

1) Create a folder for the hands-on session

2) Download the data at the following link:

http://benzekry.perso.math.cnrs.fr/DONNEES/tp_monolix/warfarin_data_pk.txt

3) Open Monolix by typing the following command in a terminal:

> monolix . sh

Use the following activation key: 2195-0854-7525-7240.

4) Create a new project

5) Load the data. The column “AMT” corresponds to the dose of drug that was adminis-

tered, the column “CONC” to the plasmatic concentrations that were measured. Look at the

“spaghetti plot” (DATAVIEWER).

6) Use a log scale to have a first guess at how many elimination phases there are in the

data?

2. No absorption

Assume the simplest PK model for elimination of the drug, that is linear first-order kinetics.

V N 
D 

A

This model can be written in terms of a differential equation as:
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1.1 Fitting a linear model
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Linear regression

𝑦 = 𝜃0 + 𝜃1𝑡 + 𝜀

Question: what is the « best » linear approximation of  ?𝑦

⇔ 𝑦 = 𝑀 ⋅ 𝜃

⇒ 𝑀𝑇𝑦 = 𝑀𝑇 𝑀 ⋅ 𝜃

𝑦1
⋮
𝑦𝑛

=
1 𝑡1
⋮ ⋮
1 𝑡𝑛

⋅ (𝜃0

𝜃1)𝑛

2

×  𝑀𝑇 ( ∈ 𝑀2,𝑛)

𝑀2,1

𝑀2,𝑛 ⋅ 𝑀𝑛,2 ⋅ 𝑀2,1𝑀2,𝑛 ⋅ 𝑀𝑛,1

𝑀2,2 ⋅ 𝑀
2,1

 rectangular 

no solution

𝑀

�̂� = (𝑴𝑻𝑴)−𝟏𝑴𝑻𝒚
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one unique solution 

(if the square matrix  is invertible)𝑀𝑇𝑀



1.2 General theory



Formalism

• Observations: n couples of points , with  (or ). 

We will denote  and . 

• Structural model: a function 

 

• The (unknown) vector of parameters 

(tj, yj) yj ∈ ℝ ℝm

y = (y1, ⋯, yn) ∈ ℝn t = (t1, ⋯, tn)
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Goal = find θ



Statistical model

• « True » parameter  

•  = error = measurement error + structural error 

• See  as realisations of random variables 

•  = sample with probability density function  

• An estimator of  is a random variable function of , denoted : 

θ*

ej

(y1, ⋯, yn)

(y1, ⋯, yn) p(y |θ*)

θ* Y ̂θ

̂θ = h(Y1, ⋯, Yn)

yj = M(tj; θ*) + ej

Yj = M(tj; θ*) + εj

 = r.v. 

 = realizations

Yj, εj

yj, ej



Linear least-squares: statistical properties

Y = Mθ* + ε

̂θLS = argmin
θ∈ℝp

Y − Mθ
2

⇔ ̂θLS = (MT M)−1 MTY

Proposition: 
Assume that , then 

 

ε ∼ 𝒩 (0, σ2I)
̂θLS ∼ 𝒩 ( ̂θ*, σ2 (MT M)−1)

From this, standard errors and confidence intervals can be computed on the parameter 
estimates

se ( ̂θLS,p) = s (MT M)−1
p,p

ICα (θLS,p) = θ* ± tα/2
n−ps (MT M)−1

p,p
s2 =

1
n − p

y − M ̂θLS

2



Statistical test for the model parameters

̂θ ∼ 𝒩 ( ̂θ*, σ2 (MT M)−1)

For k = 1,2…, p tk =
θk − θ*k

sek

t-distribution with  degrees of 
freedom

n − p

 t-test (Wald test)⟹

H0 : «  » versus H1 : «  »βk = 0 βk ≠ 0

Under the null hypothesis,  follows a t-distribution with  degrees of freedomtstat =
̂βk

sek
n − d

p-value:

ℙ ( | tn−p | ≥ tstat) = 2 (1 − ℙ (tn−p ≤ tstat))



Nonlinear regression: least-squares

Y = M (t; θ*) + ε

̂θLS = argmin
θ∈ℝp

Y − M (t; θ)
2

εj

Linearization: ,    M(t, θ) = M(t, θ*) + J ⋅ (θ − θ*) + o (θ − θ*) J = DθM(t, θ*)

Proposition: 
Assume . Then, for large , approximately ε ∼ 𝒩 (0, σ2I) n

̂θLS ∼ 𝒩 ( ̂θ*, σ2 (JT J)−1)

 standard errors, confidence intervals⇒



Sensitivity matrix

J = DθM(t, ̂θ) =

∂M
∂θ1 (t1, ̂θ) ⋯ ∂M

∂θp (t1, ̂θ)
⋮ ⋱ ⋮

∂M
∂θ1 (tn, ̂θ) ⋯ ∂M

∂θp (tn, ̂θ)
•  is a  symmetric matrix 

• It is invertible if and only if  

• Column  of  does not depend 
on  

• Line  of  does not depend on 

JT J p × p

rank(J ) = p

k J = 0 ⇔ M(t, ̂θ)
θk

i J = 0 ⇔ M(ti, ̂θ)
θ

var ( ̂θLS) = σ2 (JT J)−1



Nonlinear regression: Likelihood maximization

Y = M (t; θ*) + ε

The likelihood is defined by

L(θ) = p(y1, ⋯, yn |θ) =
n

∏
j=1

p(yj |θ)

It is the probability to observe  if the parameter is .y θ

The maximum likelihood estimator (MLE) is the value of  that maximizes the likelihood θ

̂θMV = argmax
θ

L(θ)



Asymptotic properties of the MLE

Proposition: 
Under regularity assumptions on , when  
1.  (consistency) 
2.  is asymptotically of minimal variance (it reaches the Cramér-

Rao bound): 

 

where  is the Fisher information matrix 

L n → + ∞
̂θMV ⟶ θ*
̂θMV

n ( ̂θMV − θ*) ⇀ 𝒩 (0, I−1
θ* )

Iθ*

(Iθ*)j,k
= 𝔼 { ∂ log(p(Y |θ*))

∂θj } { ∂ log(p(Y |θ*))
∂θk } = 𝔼 −

∂2 log (p (Y |θ*))
∂θj∂θk

.



Precision of the estimates

0

5

10

15

−1 0 1 2 3
θ̂

−2
LL
(θ
)

0

5

10

15

−1 0 1 2 3
θ̂

−2
LL
(θ
)

rse = 10% rse = 50%

95% C.I 95% C.I



Correlation between estimates

small r.s.e on alpha and beta, but large correlation

beta alpha

−
2𝐿

𝐿



MLE: normal errors

Yj = M (tj; θ*) + εj, εj ∼ 𝒩 (0, σ)

p(yj |θ, σ) =
1

σ 2π
e− (yj − M(tj, θ))2

2σ2 , L(θ, σ) =
1

(σ 2π)
n e−

y − M(t, θ) 2

2σ2

Maximize minimize L(θ, σ) ⇔ F(θ, σ) = − log (L(θ, σ))

F(θ, σ) = n log (σ 2π) +
y − M(t, θ)

2

2σ2

∂F
∂σ ( ̂θ, ̂σ) = 0 ⇒ ̂σ =

1
n

y − M(t, ̂θ)
2

⇒ ̂θ = argmin
θ

y − M(t, θ)
2

Maximum likelihood  Least-squares⇔
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Competition

Application: tumor growth
What are minimal biological processes able to recover the kinetics of (experimental) tumor 

growth?
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Fits very well 
Lacks physiological interpretation

Benzekry et al., PloS Comp Biol, 2014

Days
0 5 10 15 20

V
o
lu

m
e
 (

m
m

3
)

0

500

1000

1500

Since the viable tumor mass, mv, is the product of the total
number of viable cells and the average mass of a cell, mc, we have
mv~Nvmc leading to

BT~(
Bc

mc
)mvz(

Ec

mc
)
dmv

dt
ð5Þ

This first-order differential equation, representing conservation of
energy, explicitly links properties of tumor cells (Bc, Ec, and mc)
with properties of the whole tumor (BT and mv). Consequently, it
provides a simple, but powerful, way to integrate important
features and results from different areas of cancer research.
Solving this equation to determine tumor growth requires
knowledge of how tumor metabolic rate, BT , depends on its
viable mass, mv, to which we now turn.

Model for tumor vascular system and the prediction of
metabolic rate. Tumor metabolic rate, BT , is proportional to
the sum of the rates of cellular fermentation and aerobic
respiration. For avascular tumors, BT depends on the diffusion
rate of nutrients and oxygen from the surrounding environment
[18]. For vascular tumors, BT is proportional to the total blood
volume flow rate to the tumor, _QQT , consistent with observations
that glucose and oxygen consumption rates vary linearly with
blood flow rate [19]. The dependence of _QQT on mv and host mass,
M, is determined by the structure, dynamics and interaction of the
tumor and host vasculatures. Here, we develop a complete
analytical model of tumor vascular networks applicable
throughout different phases of development by deriving the
allometric scaling of tumor rates and times with host body size
and capillary density. Although the importance of the vascular
interface between the tumor and the host has been previously
recognized, our work is a novel attempt to mechanistically model
its role in tumor growth [10–12,20].

Mounting evidence suggests that some tumor vascular networks
exhibit fractal-like properties similar to those of the circulatory
system [21–23]. To analyze tumor vasculature, we borrow from an
idealized framework that has proven successful for quantitatively
understanding the circulatory system. This framework assumes
that in healthy tissue the vasculature is space-filling, minimizes
energy loss and has invariant terminal units (capillaries) [1]. We
compare these optimal networks with measures of tumor
vasculature, while retaining the assumption of invariant capillaries.

To facilitate comparisons between healthy and tumor vascula-
ture, we introduce scaling ratios for radii and lengths of vessels
across levels, k, of the network. We treat all branches at the same
level, k, as having similar properties and assume a constant
branching ratio, n–the effective number of daughter vessels for
each mother vessel [1]. Following West et al 1997 and Gevertz et
al 2006, we model blood vessels as cylinders, similar to the Krogh
model [1,11]. The capillaries define the lowest level k~N while
the largest vessels feeding the tumor define k~0 (Fig. 1). We
introduce scale factors for the ratio of daughter to mother vessel
radii:

rkz1

rk
~n{a ð6Þ

and similarly for daughter to mother vessel lengths:

lkz1

lk
~n{b ð7Þ

The exponents, a and b, can be used as quantitative diagnostics for
comparison with healthy tissue, where theory predicts and data

support a~1=2 for large vessels and a~1=3 for small vessels (from
energy minimization) and b~1=3 for all vessels (from space filling)
[1]. Deviations from these values indicate the degree to which
optimization and space-filling are violated during tumor growth.

For healthy tissue, a and b are approximately independent of k,
indicating that the network has a fractal-like structure, as observed.
To determine if tumor vascular networks have similar geometric
structure, we observe that for vessel radii, rk

r0
~n{ka, where r0 is

the largest vessel in the hierarchy, and taking the log of both sides
and rearranging yields log rk~({a log n)kzlog r0, and similarly
for vessel lengths log lk~({b log n)kzlog l0, so plotting log rk

and log lk versus k should yield straight lines whose slopes are
{a log n and {b log n, respectively, if a and b are constant.
Figs. 2a, 2b show data from various tumors, indicating that tumor
vasculature does indeed exhibit approximately fractal behavior, in
agreement with other studies [22,24].

The metabolic rate of the tumor, determined by oxygen and
nutrient availability, depends on its capillary density, which is
controlled by the scaling factors a and b. In File S1 we derive the
relationship between the metabolic rate, tumor size and vascular
architecture:

BT~B0(M)mb
v ð8Þ

where b~1 if 2azbƒ1, but ~1=(2azb) otherwise, and B0(M)
is a normalization factor that depends on the host mass, M. For
healthy tissue, where capillary density is controlled by large-vessel

scaling, this gives b~3=4, in agreement with data (B!M3=4) for
large mammals [25]. For tumors too small to support significant
pulsatile flow, or whose host supply vessels are likewise too small,
theory predicts a&1=3. So, if their vasculature is space-filling,
b~1 and their metabolic rate scales linearly: BT~B0(M)mv [1].

As tumor vasculature becomes increasingly inefficient and/or
attaches to host supply vessels sufficiently large to deliver pulsatile

Figure 1. Schematic of tumor growth model. (a) Vascularized
tumor supplied by blood siphoned from host vasculature. White area
represents viable tissue, while grey represents necrotic core. (b)
Schematic of vascular network composed of tubes. (c) Topological
model of tumor and host network beginning with feeding vessel (k = 0)
and terminating at the capillary level (k = N).
doi:10.1371/journal.pone.0022973.g001

Tumor Growth and Vascularization Theory

PLoS ONE | www.plosone.org 3 September 2011 | Volume 6 | Issue 9 | e22973

Power law

Fits very well 
Has physiological  
interpretation
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Goodness of fit metrics

Goodness of fit

Model SSE AIC RMSE R2 p > 0.05 #

Power law 0.164(0.0158 - 0.646)[1] -18.4(-43.2 - 1.63)[1] 0.415(0.145 - 0.899)[1] 0.97(0.801 - 0.998)[1] 100 2

Gompertz 0.176(0.019 - 0.613)[2] -16.9(-48.2 - 1.1)[2] 0.433(0.156 - 0.875)[2] 0.971(0.828 - 0.997)[2] 100 2

Logistic 0.404(0.0869 - 0.85)[3] -5.41(-18.4 - 3.88)[3] 0.665(0.331 - 1)[3] 0.908(0.712 - 0.989)[3] 100 2

Exponential 1.9(0.31 - 3.56)[4] 10.7(-5.38 - 23.1)[4] 1.4(0.595 - 1.95)[4] 0.69(0.454 - 0.944)[4] 15 1

Akaike Information Criterion
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Parameter values and identifiability

NSE = Normalized Standard Error practical identifiability

Parameters

Model Par. Unit Median value (CV) NSE (%) (CV)

Power law – mm3(1≠“)· day≠1 0.886 (30.8) 8.17 (52.5)
“ - 0.788 (7.56) 2.28 (58.6)

Gompertz –0 day≠1 1.68 (23.5) 6.11 (82.9)
— day≠1 0.0703 (28) 8.35 (92.9)

Logistic a day≠1 0.474 (13.3) 2.93 (23.3)
K mm3 1.92e+03 (36.7) 15.8 (28.7)

Exponential a day≠1 0.356 (12.9) 2.53 (19.4)

Identifiability of all the models (lung data)Table 3: Parameter values estimated from the fits. Lung data

Model Par. Unit Median value (CV) Mean
normalized std

error (CV)

Power law a
î
mm3(1≠“) · day≠1

ó
0.921 (38.9) 11.9 (48.7)

“ - 0.788 (9.41) 4 (53.4)

Gompertz a
⇥
day≠1⇤ 0.742 (25.3) 6.02 (51.3)

—
⇥
day≠1⇤ 0.0792 (42.4) 13.7 (65.4)

Exponential-linear a0
⇥
day≠1⇤ 0.49 (19.3) 3.08 (41.5)

a1
⇥
mm3 · day≠1⇤ 115.6 (22.6) 15.7 (40.7)

Dynamic CC
a

⇥
day≠1⇤ 0.399 (106) 447 (89.8)

b
⇥
mm≠2 · day≠1⇤ 2.66 (241) 395 (176)

K0
⇥
mm3⇤ 2.6 (322) 6.5e+04 (345)

Von Bertalan�y
a

î
mm3(1≠“) · day≠1

ó
7.72 (112) 1.43e+04 (155)

“ - 0.947 (13.5) 40.9 (73)
b

⇥
day≠1⇤ 6.75 (118) 2.98e+07 (222)

Generalized logistic
a

⇥
day≠1⇤ 2555 (148) 2.36e+05 (137)

K
⇥
mm3⇤ 4378 (307) 165 (220)

– - 0.0001413 (199) 2.36e+05 (137)

Exponential V0
V0

⇥
mm3⇤ 13.2 (47.9) 28.9 (55)

a
⇥
day≠1⇤ 0.257 (15.4) 7.49 (48.3)

Logistic a
⇥
day≠1⇤ 0.502 (17.5) 3.03 (48.9)

K
⇥
mm3⇤ 1297 (23.1) 17.2 (43.8)

Exponential 1 a
⇥
day≠1⇤ 0.399 (13.8) 2.87 (24.5)

Shown are the median values within the population and in parenthesis the coe�cient
of variation (CV, expressed in percent and defined as the standard deviation within
the population divided by mean and multiplied by 100) that quantifies inter-animal
variability. Last column represents the normalized standard errors (nse) of the maximum
likelihood estimator, defined in (11).

The improvement of this model as compared to the logistic model is notable. However, the cost

for this has been to add a parameter to the model. How do we know that we are not overfitting

now? In other words, isn’t it too easy to fit the growth curves with three parameters. This is

linked to the question of identifiability of the parameters. The theory of maximimum likelihood

estimation (MLE) offers great tools for such a purpose. Specifically, from its definition the MLE

estimator is a random variable. As such, it has a distribution coming from the fact that the data

itself is uncertain. For a single parameter, the standard deviation of this distribution is called the

standard error. An important property of the MLE estimator q̂ is that it is asymptotically normally

distributed and its asymptotic covariance matrix C can be estimated from the combination of : 1)

the (estimated) variance of the measurement error ŝ2
and 2) the jacobian matrix of the model

evaluated in q̂. Specifically, denoting J the (weighted) jacobian matrix of the model, one can show

that asymptotically

q̂ ⇠ N
✓

q⇤, ŝ2

⇣
J · JT

⌘�1
◆

where q⇤ is the true value assumed to have generated the data (which we are estimating with q̂).

I invite you to think two minutes about why the presence of ŝ as a proportional term and J as

an inversely proportional term make sense. From C the standard error (se) and relative standard

error (rse) on parameter p are defined by

se
�
q̂p� =

q
Cp,p rse

�
q̂p� =

se
�
q̂p�

q̂p
⇥ 100

Luckily, this covariance matrix is automatically calculated by curve_fit and given as a second

output. Define a new function fit_all_mice_analysis which does not plot the fits but instead
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Likelihood ratio test

Y = M1 (t; θ1) + ε1 ⟹ L1(θ1, y) Y = M2 (t; θ2) + ε2 ⟹ L2(θ2, y)

• Models have to be nested:  (ex: one compartment, two 
compartments)

θ1 ⊂ θ2 M1 = M2 =

• Comparing two models

LRTstat = 2 (LL2 ( ̂θ2) − LL1 ( ̂θ1))
= n log

∑n
j=1 (yj − M1(tj, θ1))

2

∑n
j=1 (yj − M2(tj, θ2))

2

is approximated by a  distribution 
with  degrees of freedom

χ2

p2 − p1

Null hypothesis H0 = « Model  (small model) is better »M1



Information criteria

−2LL( ̂θ)

2p+1

-log(MSE(p))

Optimal number of 
parameters

AIC(p)AI
C

(p
)

p

Fig. 3. The Akaike Information Criterion determines the optimum trade-off between model
error and size

The AIC is defined as

AIC = −n log
∑n

j=1

(

yj − ŷj(k)
)2

n
+ 2(p + 1). (5)

Here, the accuracy is determined by the log-likelihood, which is a function of the MSE. The
complexity of the model is determined by the term p + 1, where p is the number of model
parameters. Typically, the regression error decreases with increasing p, but since the model
is more likely to be over-fit for a fixed sample size, the increasing complexity is penalised.
At some point an optimal AIC is determined, which represents the optimal trade-off between
model accuracy and model complexity. The optimum model is determined by minimising the
AIC with respect to the number of model parameters, p. This is illustrated in Figure 3.
Other model selection criteria have also been similarly derived, such as the Bayesian
information criterion (BIC) (Schwarz, 1978), which is similar to the AIC, although it applies
a more severe penalty of (k ln n) to the number of model parameters. The expression for the
AIC in (5) assumes a linear regression model, but can be extended to non-linear regression.
However, it should be noted that in this case, p + 1 no longer sufficiently describes the
complexity of the model and other measures are required. Such measures include the effective
number of parameters, or Vapnik-Chernovenkis dimension. The values of these measures are a
function of the class of regression model that is estimated and the training data. The effective
number of parameters, d can be determined by trace(S), where S is a matrix defined by the
expression

ŷ = Sy. (6)

For kernel regression, the hat matrix, S, is equal to KTK, where the elements of K correspond
to each Kj(x, h), and the complexity is therefore given by trace(KTK). Factors affecting

26 Artificial Neural Networks - Methodological Advances and Biomedical Applications

www.intechopen.com

AIC = − 2LL( ̂θ)+2p BIC = − 2LL( ̂θ)+log(n)p

Best model = smallest AIC or BIC



Confidence interval and prediction interval

• Prediction at new time tnew ̂Mnew = M (tnew, ̂θ)

• Uncertainty on parameter estimate confidence interval on ̂θ ⟹ ̂Mnew

• Uncertainty on parameter estimate  

+ uncertainty on observation  (e.g. measurement error)  prediction interval on 

̂θ

ε ⟹ ̂Mnew

Y = M (t; θ) + ε

̂Mnew ∼ 𝒩 (Mnew, Var ( ̂Mnew ))

ynew = Mnew + ε

ynew ∼ 𝒩 ( ̂Mnew , Var ( ̂Mnew ) + σ2I)



Confidence interval vs prediction interval



Mixed-effects modeling
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Population data

rate (in hour�1). Note that pharmacologists prefer to use the more meaningful notion of

clearance, defined by Cl = kV and thus in units of L·hour�1, which expresses what volume

of blood is “cleared” from the drug by unit of time.

0) Download the structural model at:

http://benzekry.perso.math.cnrs.fr/DONNEES/tp_monolix/one_comp_bolus.txt

1) Go to structural model and load the file one comp bolus.txt as model.

2) Explore initial values of the parameters to get a reasonable initial guess

3) Launch the fit. (Do you understand the meaning of all possible tasks? (EBE = Empirical

Bayes Estimates))

4) Look at the goodness-of-fit of the model for individual fits (plots and Observations vs.

Predictions). What do you conclude about this model?

5) Compute likelihood. Write down AIC (Akaike Information Criterion) for future comparison

Save this project.

3. Absorption

In fact, as seen directly on the data, the dose does not get directly to the plasma. This is

due to the mode of administration of the drug, which was by oral take. Thus, the drug has

to go through an absorption compartment (the gastro-intestinal system) before reaching the

systemic circulation.

V N 
D 

Na 

AAa

The equations for this model write, with Aa(t) and A the amounts of drug in the absorption

and central compartments, respectively, and C(t) the concentration in the central (systemic)

3

compartment: 8
>>>>><

>>>>>:

dAa
dt = �kaAa

dA
dt = kaAa � kA

Aa(t = 0) = D, (t = 0) = 0

C(t) =
A(t)

V
.

1) Write this model in MLXTRAN in a .txt file. MLXTRAN is the language used by Monolix.

You can use the previous model file as a template.

Note the use of the depot function of MLXTRAN to deal with administration of the doses.

The role of this function is to inject doses in the variables, which would normally require

Dirac functions (if no administration length (i.e. perfusion time)) in the differential equations.

It does nothing more than A(t+D) = A(t�D)+D(tD), where tD is a dose administration time and

D(tD) is the dose given at this time (defined in the column AMT (for amount) in the data).

2) Use a proportional error model. Look at the formulas for the error and individual models.

Compare with the theoretical formulas from the class.

3) Fit

3.1) Launch estimation of the population and individual parameters. Does the model

seem appropriate on individual fits?

3.2) What individual contributes most to the likelihood? Run likelihood estimation task,

then plot individual contributions (parameters in the “Plots” button)? Does this corre-

spond with individual fits?

Note: each time you run a task and save in Monolix, files are added to a folder with the

name of the project containing the results. You can find a summary of the fit, population and

individual parameters, predictions for each of the individuals, etc... All these information is

stored in .txt files and can easily be loaded from external softwares (such as R, python or

matlab) for further analysis.

4) Residuals

4.1) Plot the individual and population residuals (parameters in the “Plots” button). Plot

only conditional mode (“Display” panel on the right). (**Do you understand what is the

4

Individual structural model

ψ i = ψpop + ηi, ηi ∼ 𝒩 (0, Ω)

fixed effects random effects

Population fit (MLE)

Theophylline pharmacokinetics 3. Examples
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Figure 3.5: Individual plots for the 12 subjects in the study. Dots represent observations and
the line shows the smoothed profile predicted using the individual estimated parameters.
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Population modeling: the two-steps approach
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rate (in hour�1). Note that pharmacologists prefer to use the more meaningful notion of

clearance, defined by Cl = kV and thus in units of L·hour�1, which expresses what volume

of blood is “cleared” from the drug by unit of time.

0) Download the structural model at:

http://benzekry.perso.math.cnrs.fr/DONNEES/tp_monolix/one_comp_bolus.txt

1) Go to structural model and load the file one comp bolus.txt as model.

2) Explore initial values of the parameters to get a reasonable initial guess

3) Launch the fit. (Do you understand the meaning of all possible tasks? (EBE = Empirical

Bayes Estimates))

4) Look at the goodness-of-fit of the model for individual fits (plots and Observations vs.

Predictions). What do you conclude about this model?

5) Compute likelihood. Write down AIC (Akaike Information Criterion) for future comparison

Save this project.

3. Absorption

In fact, as seen directly on the data, the dose does not get directly to the plasma. This is

due to the mode of administration of the drug, which was by oral take. Thus, the drug has

to go through an absorption compartment (the gastro-intestinal system) before reaching the

systemic circulation.

V N 
D 

Na 

AAa

The equations for this model write, with Aa(t) and A the amounts of drug in the absorption

and central compartments, respectively, and C(t) the concentration in the central (systemic)

3

compartment: 8
>>>>><

>>>>>:

dAa
dt = �kaAa

dA
dt = kaAa � kA

Aa(t = 0) = D, (t = 0) = 0

C(t) =
A(t)

V
.

1) Write this model in MLXTRAN in a .txt file. MLXTRAN is the language used by Monolix.

You can use the previous model file as a template.

Note the use of the depot function of MLXTRAN to deal with administration of the doses.

The role of this function is to inject doses in the variables, which would normally require

Dirac functions (if no administration length (i.e. perfusion time)) in the differential equations.

It does nothing more than A(t+D) = A(t�D)+D(tD), where tD is a dose administration time and

D(tD) is the dose given at this time (defined in the column AMT (for amount) in the data).

2) Use a proportional error model. Look at the formulas for the error and individual models.

Compare with the theoretical formulas from the class.

3) Fit

3.1) Launch estimation of the population and individual parameters. Does the model

seem appropriate on individual fits?

3.2) What individual contributes most to the likelihood? Run likelihood estimation task,

then plot individual contributions (parameters in the “Plots” button)? Does this corre-

spond with individual fits?

Note: each time you run a task and save in Monolix, files are added to a folder with the

name of the project containing the results. You can find a summary of the fit, population and

individual parameters, predictions for each of the individuals, etc... All these information is

stored in .txt files and can easily be loaded from external softwares (such as R, python or

matlab) for further analysis.

4) Residuals

4.1) Plot the individual and population residuals (parameters in the “Plots” button). Plot

only conditional mode (“Display” panel on the right). (**Do you understand what is the

4
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Figure 3.5: Individual plots for the 12 subjects in the study. Dots represent observations and
the line shows the smoothed profile predicted using the individual estimated parameters.
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Y1 = M (t; θ1) + ε

Y2 = M (t; θ2) + ε
. . . 

YN = M (t; θN) + ε

𝒩 ( ̂θpop , ̂Ω )

̂θpop =
1
N

N

∑
i=1

θi

̂Ω = VCov ( ̂θi)



• Course « Statistics in Action with R » by Marc Lavielle 
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