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Basic functions ℝ → ℝ

𝑥 ↦ 𝑥! 𝑥 ↦ l𝑛 𝑥
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𝑥 ↦ exp 𝑥 = 𝑒"
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𝑒#$% = 𝑒# ⋅ 𝑒% ln 𝑎 ⋅ 𝑏 = ln 𝑎 + 𝑏

ln 𝑒" = 𝑒&'(") = 𝑥 log*+ 𝑥 =
ln(𝑥)
ln(10)

log*+ 10" = 10&,-!"(") = 𝑥



Derivative

• Linear approximation of a (nonlinear) function ℝ → ℝ, in the neighborhood of 𝑎

𝑓 𝑥 = 𝑓 𝑎 + 𝑓! 𝑎 ⋅ 𝑥 − 𝑎 + 𝜀(𝑥)
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𝑦 = 𝑓 𝑎 + 𝑓! 𝑎 ⋅ (𝑥 − 𝑎)

𝜀(𝑥)

𝑓(𝑎)

• Formally

𝑓! 𝑎 = lim
"→$

𝑓 𝑥 + 𝑎 − 𝑓(𝑎)
𝑥 − 𝑎

𝑓! 𝑎

𝑎



Derivative

• Linear approximation of a (nonlinear) function ℝ → ℝ, in the neighborhood of 𝑎

𝑓 𝑥 = 𝑓 𝑎 + 𝑓! 𝑎 ⋅ 𝑥 − 𝑎 + 𝜀(𝑥)

• Example, for 𝑥 ≃ 0

𝑒" ≃ 𝑒% + 𝑒! 0 ⋅ 𝑥 − 0

𝑒" ≃ 1 + 𝑥
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Quadratic approximation. Second derivative

• Same slope as 𝑓 and same curvature. Taylor’s formula

𝒇 𝒙 = 𝒇 𝒂 + 𝒇! 𝒂 ⋅ 𝒙 − 𝒂 +
𝒇!! 𝒂
𝟐

⋅ 𝒙 − 𝒂 𝟐 + 𝜺(𝒙)

• Linear function 𝑓 𝑥 = 𝜃% + 𝜃'𝑥 ⇔ line characterized by slope

• Quadratic function 𝑓 𝑥 = 𝜃% + 𝜃'𝑥 + 𝜃(𝑥( ⇔ characterized by curvature
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Minimization

Why? fit a model ⟺ minimize a function

Param 2Param 1
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𝑓! 0 = 0

Extremum. Necessary condition

• If 𝑓 has a minimum or maximum in 𝑎

𝑓 𝑥 ≃ 𝑓 𝑎 + 𝑓! 𝑎 ⋅ (𝑥 − 𝑎)

⇒ 𝑓! 𝑎 = 0

• But this is not a sufficient condition
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Extremum. Sufficient condition

𝑓 𝑥 ≃ 𝑓 𝑎 + 𝑓! 𝑎 ⋅ 𝑥 − 𝑎 +
𝑓!! 𝑎
2

⋅ 𝑥 − 𝑎 (

• 𝑎 extremum
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𝒇:ℝ𝒏 → ℝ. Gradient

• Linear function ℝ) → ℝ ⇒ 𝑎, 𝑥 = 𝑎'𝑥' +⋯+ 𝑎)𝑥)

𝒇 𝒙 ≃ 𝒇 𝒂 + 𝛁𝒇 𝒂 , 𝒙 − 𝒂 = 𝒇 𝒂 +
𝝏𝒇
𝝏𝒙𝟏

𝒂 ⋅ 𝒙𝟏 − 𝒂𝟏 +⋯+
𝝏𝒇
𝝏𝒙𝒏

𝒂 ⋅ 𝒙𝒏 − 𝒂𝟏

• ∇𝑓 𝑎 = -.
-"!

𝑎 ,⋯ , -.
-"%

𝑎 ∈ ℝ) • -.
-&'

𝑎 is called the partial derivative of 𝑓

in 𝑎 in the direction 𝑥/



Gradient descent algorithms

• 𝑓 has a minimum (or maximum) in 𝑎 ⇒ 𝛁𝒇 𝒂 = 𝟎, i.e. -.
-&'

𝑎 = 0 ∀𝑖
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𝜃)0' = 𝜃) − 𝜆∇𝑓 𝜃)⇒ To minimize 𝑓

∇𝑓 𝜃) =
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Optimization algorithms for NLME

• FO = First Order. Linearizes for small values of random effects and residual error
Sheiner, Comput Biomed Res, 1972, Sheiner and Beal, J Pharmacokinet Biopharm, 1980

⇒ Fast, but inaccurate for large 𝜔 or large residual error

• FOCE (NONMEM) = First-Order Conditional Estimation. Improvement over FO in terms of estimation of 𝜔.
Lindstrom and Bates, Biometrics, 1990

• FOCE-I = FOCE with interaction between intra- (𝜀) and inter- (𝜂) variability.

⇒ to be used when proportional (or combined) error model but more computationally demanding

• LAPLACE = Same as FOCE except second-derivative (Hessian) approximation. Used for nonnormal (or 
lognormal) densities.
Wolfinger, Biometrika, 1993

• SAEM (NONMEM, Monolix) = Stochastic Approximation of Expectation-Maximization
Delyon, Lavielle, Moulines, Annals of Statistics, 1999

⇒ Slower, but converges better to global minimum Plan et al., AAPS J, 2012

Bauer, CPT: PSP, 2019



𝒇:ℝ𝒏 → ℝ𝒎. Differential

• 𝑓:

ℝ) → ℝ1

𝑥 = (𝑥', ⋯ , 𝑥)) ↦
𝑓'(𝑥', ⋯ , 𝑥))

⋮
𝑓1(𝑥', ⋯ , 𝑥))

• Linear application ℝ) → ℝ1? Matrix!

𝐷𝑓 𝑎 =

𝜕𝑓'
𝜕𝑥'

(𝑎) ⋯
𝜕𝑓'
𝜕𝑥)

(𝑎)

⋮ ⋱ ⋮
𝜕𝑓1
𝜕𝑥'

(𝑎) ⋯
𝜕𝑓1
𝜕𝑥)

(𝑎)

𝑛

𝑚 𝒇 𝒙 + 𝒂 = 𝒇 𝒂 + 𝑫𝒇 𝒂 ⋅ 𝒙 − 𝒂 + 𝜺(𝒙)



Sensitivity matrix

𝑦2 = 𝑓 𝑡2 , 𝜃∗ + 𝜀2 ⇔
𝑦'
⋮
𝑦4

=
𝑓(𝑡', 𝜃∗)

⋮
𝑓(𝑡), 𝜃∗)

+
𝜀'
⋮
𝜀4

⇔ 𝑦 = 𝑓 𝑡, 𝜃∗ + 𝜀

• Suppose we have a first guess 𝜃% close to 𝜃∗.

𝑆 = 𝐷5𝑓 𝑡, 𝜃 =

𝜕𝑓
𝜕𝜃'

(𝑡', 𝜃) ⋯
𝜕𝑓
𝜕𝜃6

(𝑡', 𝜃)

⋮ ⋱ ⋮
𝜕𝑓
𝜕𝜃'

(𝑡), 𝜃) ⋯
𝜕𝑓
𝜕𝜃6

(𝑡), 𝜃)

𝑝

𝑛

= Sensitivity matrix

𝑓 𝑡, 𝜃∗ ≃ 𝑓 𝑡, 𝜃% + 𝐷5𝑓 𝑡, 𝜃% ⋅ 𝜃∗ − 𝜃%

𝑦 ≃ 𝑓 𝑡, 𝜃% + 𝑆 ⋅ 𝜃∗ − 𝜃%

𝜃∗ ≃ 𝜃% + 𝑆7' ⋅ 𝑦 − 𝑓 𝑡, 𝜃%

• If there is an exact solution (𝜀 = 0)

• In general, 𝜀 ≠ 0 and 𝑛 > 𝑝 ⇒ least-squares

𝑆8 ⋅ 𝑆 7' ⋅ 𝑆8 ⋅ 𝑦 − 𝑓 𝑡, 𝜃%



𝒇:ℝ𝒏 → ℝ. Hessian matrix

• Second derivative?

• Quadratic form: ℝ
) → ℝ
𝑥 ↦ 𝑥8 ⋅ 𝑀 ⋅ 𝑥 ,      𝑀 symmetric matrix

• Matrix of second partial derivatives = Hessian matrix

𝑯 =

𝝏𝟐𝒇
𝝏𝒙𝟏𝟐

⋯
𝝏𝟐𝒇

𝝏𝒙𝟏𝝏𝒙𝒏
⋮ ⋱ ⋮

𝝏𝟐𝒇
𝝏𝒙𝒏𝝏𝒙𝟏

⋯
𝝏𝟐𝒇
𝝏𝒙𝒏𝟐

• -.
-"'-"(

= -.
-"(-"'

⇒ 𝐻 is symmetric



Curvature

• The Hessian matrix extends the notion of (local) curvature to 𝑓:ℝ) → ℝ
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Extremum in dimension 𝒏

• Note: Hessian of the objective function (-2LL) = R matrix in NONMEM
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Differential equations. 1D

• Derivative = rate of variation of one quantity relatively to another

• Historically introduced to describe movement (Newton)
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𝑦! = 𝑓(𝑡, 𝑦)

• To determine the solution, we need to specify the 
differential equation (rate of change) and initial 
condition. Deterministic system

𝐶! 𝑡 =
𝑑𝐶
𝑑𝑡

h
𝑦! = 𝑓(𝑡, 𝑦)
𝑦 𝑡% = 𝑦%



Linear equation in 1D

• The equation is said to be linear when 𝑓 is linear in 𝑦

• The fundamental function with derivative proportional to itself is the exponential 𝑒9:

• The equation is called homogenous when there is no zero-order term

𝑑𝐶
𝑑𝑡

= −𝑘𝐶

𝐶 0 =
𝐷
𝑉

⇒ 𝐶 𝑡 =
𝐷
𝑉
𝑒7;:

• For a non-homogenous equation, method of « variation of the parameter »  

𝑑𝐶
𝑑𝑡

= −𝑘𝐶 + 𝑢

𝐶 0 =
𝐷
𝑉

𝐶 𝑡 = 𝜆(𝑡)𝑒7;: ⇒ 𝐶 𝑡 =
𝐷
𝑉
𝑒7;: +

𝑢
𝑘
1 − 𝑒7;:

𝑦! = 𝑓(𝑡, 𝑦)



One-compartment model with absorption
compartment: 8

>>>>><

>>>>>:

dAa
dt = �kaAa

dA
dt = kaAa � kA

Aa(t = 0) = D, (t = 0) = 0

C(t) =
A(t)

V
.

1) Write this model in MLXTRAN in a .txt file. MLXTRAN is the language used by Monolix.

You can use the previous model file as a template.

Note the use of the depot function of MLXTRAN to deal with administration of the doses.

The role of this function is to inject doses in the variables, which would normally require

Dirac functions (if no administration length (i.e. perfusion time)) in the differential equations.

It does nothing more than A(t+D) = A(t�D)+D(tD), where tD is a dose administration time and

D(tD) is the dose given at this time (defined in the column AMT (for amount) in the data).

2) Use a proportional error model. Look at the formulas for the error and individual models.

Compare with the theoretical formulas from the class.

3) Fit

3.1) Launch estimation of the population and individual parameters. Does the model

seem appropriate on individual fits?

3.2) What individual contributes most to the likelihood? Run likelihood estimation task,

then plot individual contributions (parameters in the “Plots” button)? Does this corre-

spond with individual fits?

Note: each time you run a task and save in Monolix, files are added to a folder with the

name of the project containing the results. You can find a summary of the fit, population and

individual parameters, predictions for each of the individuals, etc... All these information is

stored in .txt files and can easily be loaded from external softwares (such as R, python or

matlab) for further analysis.

4) Residuals

4.1) Plot the individual and population residuals (parameters in the “Plots” button). Plot

only conditional mode (“Display” panel on the right). (**Do you understand what is the

4

𝐴$ 𝑡 = 𝐷𝑒7;):

𝐴 𝑡 = 𝐷
𝑘$

𝑘$ − 𝑘
𝑒7;: − 𝑒7;):

𝑑𝐴
𝑑𝑡

= 𝑘$𝐷𝑒7;): − 𝑘𝐴

𝑑 m𝐴
𝑑𝑡

= 𝑘$𝐷𝑒7;):0;: − 𝑘𝐴𝑒;: + 𝑘𝐴𝑒;:

m𝐴(𝑡) = 𝐴(𝑡)𝑒;:

m𝐴 𝑡 = m𝐴 0 + 𝑘$𝐷n
%

:
𝑒 ;7;) <𝑑𝑠 = 0 +

𝑘$𝐷
𝑘 − 𝑘$

𝑒 ;7;) : − 1

𝐴



System of linear differential equations

𝑦'! = 𝑎','𝑦' + 𝑎',(𝑦( +⋯+ 𝑎',)𝑦)
𝑦(! = 𝑎(,'𝑦' + 𝑎(,(𝑦( +⋯+ 𝑎(,)𝑦)

⋮
𝑦)! = 𝑎),'𝑦' + 𝑎),(𝑦( +⋯+ 𝑎),)𝑦)

⇔
𝑦'!

𝑦(!
⋮
𝑦)!

=

𝑎',' 𝑎',( ⋯ 𝑎',)
𝑎(,' 𝑎(,( ⋯ 𝑎(,)
⋮ ⋮ ⋱ ⋮

𝑎),' 𝑎),( ⋯ 𝑎),)

⋅

𝑦'
𝑦(
⋮
𝑦)

⇔ 𝑦! = 𝑀 ⋅ 𝑦

𝑦! 𝑡 = 𝑒>:𝑦%??

• 𝐷 diagonal

𝐷 =
𝜆' ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆)

𝑒? =
𝑒9! ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑒9%

• 𝑀 diagonalizable 𝑀 = 𝑃7' ⋅ 𝐷 ⋅ 𝑃

𝑒> = 𝑃 ⋅
𝑒9! ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑒9%

⋅ 𝑃7'

⇒ 𝑦/ 𝑡 = linear combination of 𝑒9(
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1) Write this model in MLXTRAN in a .txt file. MLXTRAN is the language used by Monolix.

You can use the previous model file as a template.

Note the use of the depot function of MLXTRAN to deal with administration of the doses.

The role of this function is to inject doses in the variables, which would normally require

Dirac functions (if no administration length (i.e. perfusion time)) in the differential equations.

It does nothing more than A(t+D) = A(t�D)+D(tD), where tD is a dose administration time and

D(tD) is the dose given at this time (defined in the column AMT (for amount) in the data).

2) Use a proportional error model. Look at the formulas for the error and individual models.

Compare with the theoretical formulas from the class.

3) Fit

3.1) Launch estimation of the population and individual parameters. Does the model

seem appropriate on individual fits?
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then plot individual contributions (parameters in the “Plots” button)? Does this corre-

spond with individual fits?

Note: each time you run a task and save in Monolix, files are added to a folder with the
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𝐴

𝐴$′
𝐴′

= −𝑘$ 0
𝑘$ −𝑘 ⋅ 𝐴$

𝐴

• Eigenvalues −𝑘$ and −𝑘

𝐴 𝑡 = 𝐷
𝑘$

𝑘$ − 𝑘
𝑒7;: − 𝑒7;):

⇒ 𝐴 𝑡 = linear combination of 
𝑒7;): and 𝑒7;:
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Nonlinear differential equations

• No general method of resolution
𝑦! = 𝑓(𝑡, 𝑦)

• Numerical approximation algorithms (solvers) 
have to be used

• Euler method

• Runge-Kutta methods

• Ex: nonlinear elimination (Michaelis – Menten)

𝑑𝐴
𝑑𝑡

= −𝑉1$"
𝐴

𝑉𝐾1 + 𝐴


