
models_fitting_corrected

March 6, 2018

1 Tumor growth modeling

2 2. Tumor growth laws

Problem:
Considering n volume observations (V1, · · · , Vn) at time points (t1, · · · , tn), we would like to

see whether these data could have been generated by a given function

V :
R×Rp −→ R

(t, θ) 7−→ V(t, θ)

depending on time t and a vector of parameters θ ∈ Rp.
Another – closely related – problem is to find a set of parameters θ̂ that would "best" describe

the data.
In our context a model will be the combination of two parts: 1. The structural model V (deter-

ministic) 2. An observation model linking the model to the observations (error model, stochastic)
The latter is defined by assuming that the observations were generated by the model plus some

measurements error and we write
Vj = V(tj; θ) + σjε j.

where σjε j describes the error term. It is natural to assume that this error term is gaussian, with ex-
pectation zero. σj is the standard deviation of the error and the ε j are independent and identically
distributed random variables with

ε j ∼ N (0, 1).

Error model
An important assumption of the model is how does σj depend on the volume. The first step

would be to consider σj as constant (i.e. independent of j), which would mean that for all the obser-
vations, the magnitude of the error is the same. However, it appears also reasonable to consider
that from our measurement technique (calipers), larger tumors would result in larger errors. A
natural assumption could then be a proportional error model described by σj = σV(tj, θ). In our
case, a detailed study of 133 measurements that were performed twice on the same tumor estab-
lished a slightly more refined model but we will assume a proportional error model for simplicity.

Likelihood maximization
A central concept in model fitting and parameter estimation is the notion of likelihood and

likelihood maximization. The likelihood of the data is defined as the probability density function
of the data, under the assumption it has been generated by the model V with parameters θ and σ.
Note that σ is often unknown and is a parameter to be established. However in our analysis we

1

could compute it from the analysis mentioned above and we will take here σ = 0.1 (10% error).
From the formula above, under the independence and normality assumption we can compute it
to get

L(θ) = p(V1, · · · , Vn; θ) =
n

∏
j=1

p(Vj; θ) =
n

∏
j=1

1
σj
√

2π
e
− (

Vj−V(tj ,θ))
2

2σ2
j

At this point, it is natural to consider the log-likelihood l(θ, σ) = ln (L(θ)) to simplify the calcula-
tions. We get

l(θ) = −
n

∑
j=1

(
Vj −V(tj, θ)

)2

2σ2
j

−
n

∑
j=1

ln(σj)− n ln(
√

2π) (1)

l(θ) = −
n

∑
j=1

(
Vj −V(tj, θ)

)2

2σ2V(tj, θ)2 − n ln(σ)−
n

∑
j=1

ln(V(tj, θ))− n ln(
√

2π) (2)

To simplify further, we will replace V(tj, θ) by the observation Vj in the terms above coming
from the error model (third term and denominator in the first sum). The maximization of the log-
likelihood then becomes equivalent to the following weighted least squares minimization problem
(the σs can be removed because they don’t change the minimization problem):

θ̂ = argmin
θ

∣∣∣∣∣∣∣∣V −V(t; θ)

V

∣∣∣∣∣∣∣∣2
2

.

where V = (V1, · · · , Vn), V(t; θ) = (V(t1; θ), · · · , V(tn; θ)) and || · ||2 is the discrete L2 norm (sum
of squares).

Import modules and load the data

In [1]: % matplotlib inline
%precision %.3g

Out[1]: '%.3g'

In [2]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

In [3]: df = pd.read_excel('data_table.xlsx')
time = df.index.values

2.1 2.1 Proliferation and the exponential model

We will first explore the validity of the exponential growth model to test what was observed by
plotting the curves. The model is defined by a constant length of the cell cycle (thus a constant
doubling time) for a constant fraction of the tumor volume. In equations, this translates into{ dV

dt = αV
V(t = 0) = V0

=⇒ V(t) = V0eαt

2

where V0 is the initial volume and α is the proliferation rate, defined by α = ln(2)
τ with τ the length

of the cell cycle.
Define a python function exponential_V0 taking a time vector time and a vector of parameters

param as input (in this order) and giving the exponential model value as output.

In [4]: def exponential_V0(time, alpha, V0):
V = V0*np.exp(alpha*time)
return V

By manual exploration of the parameters and plotting the first mouse growth data together
with model simulations, test different values of the parameters that would best describe the data

In [5]: alpha = 0.2
V0 = 20
V = exponential_V0(time, alpha, V0)
plt.errorbar(df.index, df[1], 0.1*df[1], fmt='o')
plt.plot(time, V)

Out[5]: [<matplotlib.lines.Line2D at 0x118e1c518>]

Using the function curve_fit from the module scipy.optimize, find the parameters α̂1 and
V̂0

1 that best fit the data of the first mouse.

In [6]: from scipy.optimize import curve_fit

To get the data vector with no nan and corresponding time vector, use (example with j = 1)

3

In [7]: time_1 = time[~np.isnan(df[1])]
data_1 = df[1][~np.isnan(df[1])]

In [8]: popt, pcov = curve_fit(exponential_V0, time_1, data_1, [alpha, V0], sigma=0.1*data_1)
print('alpha_opt = %.3g' %popt[0])
print('V0_opt = %.3g' %popt[1])

alpha_opt = 0.248
V0_opt = 12.4

Plot the resulting curve and data (with 10% error bar). Plot the model curve from day 0. What
would you conclude in terms of the validity of the model?

In [9]: time_plot = np.linspace(0, time_1[-1], 1000)
V_plot = exponential_V0(time_plot, popt[0], popt[1])
plt.errorbar(df.index, df[1], 0.1*df[1], fmt='o')
plt.plot(time_plot, V_plot)
plt.xlabel('Days')
plt.ylabel('Volume (mm^3)')

Out[9]: Text(0,0.5,'Volume (mmˆ3)')

Plot the curve in log scale with plt.yscale('log') and set the limits of the y axis to (1, 2500)
with plt.ylim(1, 2500). Remembering that at day 0 106 cells (equivalent to 1 mm3) were injected
in the animal, what do you think of the plausibility of the model for the entire duration of the
experiment?

4

In [10]: plt.figure(2)
plt.errorbar(df.index, df[1], 0.1*df[1], fmt='o')
plt.plot(time_plot, V_plot)
plt.xlabel('Days')
plt.ylabel('Volume (mm^3)')
plt.yscale('log')
plt.ylim(1, 2500)

Out[10]: (1, 2500)

/Users/benzekry/anaconda3/lib/python3.6/site-packages/matplotlib/scale.py:111: RuntimeWarning: invalid value encountered in less_equal
out[a <= 0] = -1000

Repeat this for all the mice (use a for loop) but plot only in log scale. What do you conclude
from the values of V0 obtained and the plots?

In [11]: for mouse in range(1, 11):
time_loc = time[~np.isnan(df[mouse])]
data_loc = df[mouse][~np.isnan(df[mouse])]
popt, pcov = curve_fit(exponential_V0, time_loc, data_loc, [alpha, V0], sigma=0.1*data_loc)
print('alpha_opt = %.3g' %popt[0])
print('V0_opt = %.3g' %popt[1])
V_plot = exponential_V0(time_plot, popt[0], popt[1])
plt.figure(mouse)

5

plt.errorbar(df.index, df[mouse], 0.1*df[mouse], fmt='o')
plt.plot(time_plot, V_plot)
plt.xlabel('Days')
plt.ylabel('Volume (mm^3)')
plt.yscale('log')
plt.ylim(1, 2500)

alpha_opt = 0.248
V0_opt = 12.4
alpha_opt = 0.215
V0_opt = 20.8
alpha_opt = 0.223
V0_opt = 24.2
alpha_opt = 0.208
V0_opt = 12.9
alpha_opt = 0.222
V0_opt = 16.8
alpha_opt = 0.27
V0_opt = 10.3
alpha_opt = 0.26
V0_opt = 20.5
alpha_opt = 0.226
V0_opt = 18
alpha_opt = 0.273
V0_opt = 5.37
alpha_opt = 0.238
V0_opt = 9

/Users/benzekry/anaconda3/lib/python3.6/site-packages/matplotlib/scale.py:111: RuntimeWarning: invalid value encountered in less_equal
out[a <= 0] = -1000

6

7

8

9

10

11

To test this further, let’s use the information on the number of injected cells as an initial condi-
tion and define another model, named exponential defined by{ dV

dt = αV
V(t = 0) = 1

=⇒ V(t) = eαt

In [12]: def exponential(time, alpha):
return np.exp(alpha*time)

In [13]: for mouse in range(1, 11):
time_loc = time[~np.isnan(df[mouse])]
data_loc = df[mouse][~np.isnan(df[mouse])]
popt, pcov = curve_fit(exponential, time_loc, data_loc, alpha, sigma=0.1*data_loc)
print('alpha_opt = %.3g' %popt[0])
V_plot = exponential(time_plot, popt[0])
plt.figure(2*mouse)
plt.errorbar(df.index, df[mouse], 0.1*df[mouse], fmt='o')
plt.plot(time_plot, V_plot)
plt.xlabel('Days')
plt.ylabel('Volume (mm^3)')
plt.ylim(1, 2500)
plt.figure(2*mouse+1)
plt.errorbar(df.index, df[mouse], 0.1*df[mouse], fmt='o')
plt.plot(time_plot, V_plot)
plt.xlabel('Days')
plt.ylabel('Volume (mm^3)')
plt.yscale('log')
plt.ylim(1, 2500)

alpha_opt = 0.377
alpha_opt = 0.361
alpha_opt = 0.399
alpha_opt = 0.324
alpha_opt = 0.362
alpha_opt = 0.397
alpha_opt = 0.479
alpha_opt = 0.38
alpha_opt = 0.358
alpha_opt = 0.338

/Users/benzekry/anaconda3/lib/python3.6/site-packages/matplotlib/scale.py:111: RuntimeWarning: invalid value encountered in less_equal
out[a <= 0] = -1000

12

13

14

15

16

17

18

19

20

21

22

2.2 2.2 Competition and the logistic model

The above observations demonstrated that the tumor growth had to be faster than their actual
growth rate during the observation phase, if starting from V(t = 0) = 1 mm3. This suggests
to look for models that would exhibit such growth deceleration. In ecology, when modeling the
growth of a population, a famous model for explaining growth deceleration and saturation is the
logistic model. A tumor being a population of cells, it appears natural to test this model against
our data. The logistic model states that the individuals (here the tumor cells) would compete for
nutrients or space. Introducing the concept of carrying capacity K as the maximal reachable size for
the population, the fraction of cells able to divide is then 1− V

K and the model writes{ dV
dt = αV

(
1− V

K

)
V(t = 0) = 1

=⇒ V(t) =
K

1 + (K− 1)e−αt .

Define a python function logistic for simulation of this model

In [14]: def logistic(time, alpha, K):
V = K/(1+(K-1)*np.exp(-alpha*time))
return V

Define a function fit_all_mice that takes as input a model function and initial parameters,
fits the model to the 10 individual tumor growth kinetics and plots these fits both in arithmetic
and logarithmic scale. Set the option maxfev=10000 when calling curve_fit.

In [15]: def fit_all_mice(model_f, param0):
for mouse in range(1, 11):

time_loc = time[~np.isnan(df[mouse])]
data_loc = df[mouse][~np.isnan(df[mouse])]
popt, pcov = curve_fit(model_f, time_loc, data_loc, param0, sigma=0.1*data_loc, maxfev=10000)
print(popt)
time_plot = np.linspace(0, time_loc[-1], 1000)
V_plot = model_f(time_plot, *popt)
plt.figure(2*mouse)
plt.errorbar(df.index, df[mouse], 0.1*df[mouse], fmt='o')
plt.plot(time_plot, V_plot)
plt.xlabel('Days')
plt.ylabel('Volume (mm^3)')
plt.ylim(1, 2500)
plt.figure(2*mouse+1)
plt.errorbar(df.index, df[mouse], 0.1*df[mouse], fmt='o')
plt.plot(time_plot, V_plot)
plt.xlabel('Days')
plt.ylabel('Volume (mm^3)')
plt.yscale('log')
plt.ylim(1, 2500)

Apply it to the logistic model with initial parameters α = 0.5 and K = 5000. What do you
think of the visual accuracy of the fits? Comment also on the plausibility of the inferred values of
K.

23

In [16]: alpha = 0.5
K = 5000
fit_all_mice(logistic, [alpha, K])

[5.03860131e-01 1.44964365e+03]
[5.27244972e-01 1.41192700e+03]
[4.99815175e-01 1.75627985e+03]
[4.08117450e-01 1.43174842e+03]
[4.84841337e-01 1.39187850e+03]
[5.17437787e-01 1.52860872e+03]
[0.72430748 588.50815217]
[4.65311047e-01 1.66158324e+03]
[4.37049763e-01 1.50147207e+03]
[4.34415244e-01 1.47095044e+03]

/Users/benzekry/anaconda3/lib/python3.6/site-packages/matplotlib/scale.py:111: RuntimeWarning: invalid value encountered in less_equal
out[a <= 0] = -1000

24

25

26

27

28

29

30

31

32

33

2.3 2.3 The generalized logistic model and standard errors on the parameters esti-
mates

The previous results suggest that the logistic model is still not great at describing the entire growth
curves. This motivates us to consider an even more flexible sigmoidal model: the generalized
logistic model. It consists in modulating the strength of the competition through a power γ and
writes: {

dV
dt = αV

(
1−

(V
K

)γ
)

V(t = 0) = 1
=⇒ V(t) =

K

(1 + (Kγ − 1)e−αγt)
1
γ

.

Write a model function generalized_logistic for simulation of this model

In [17]: def generalized_logistic(time, alpha, K, gamma):
V = K/(1+(K**gamma - 1)*np.exp(-alpha*gamma*time))**(1/gamma)
return V

Fit this model to the data of the 10 mice. What do you conclude in terms of descriptive power
of this model?

In [18]: fit_all_mice(generalized_logistic, [0.5, 5000, 0.1])

/Users/benzekry/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:2: RuntimeWarning: invalid value encountered in double_scalars

/Users/benzekry/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:2: RuntimeWarning: overflow encountered in exp

34

/Users/benzekry/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:2: RuntimeWarning: divide by zero encountered in true_divide

/Users/benzekry/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:2: RuntimeWarning: invalid value encountered in power

[9.13445953e-01 3.44857761e+03 1.64066691e-01]
[1.23021097e+03 3.32848996e+03 9.23848347e-05]
[8.75835301e+02 6.92673511e+03 1.05991862e-04]
[5.99914067e+02 1.46546498e+04 1.03289104e-04]
[9.30083585e+02 4.95956354e+03 1.00358141e-04]
[3.72231243e+01 9.87796617e+03 2.29680038e-03]
[9.37274737e+02 2.04588510e+03 1.52731587e-04]
[4.19365169e+02 1.75620084e+04 1.67670507e-04]
[1.51656593e+02 2.53719159e+04 3.98436798e-04]
[5.39765585e+02 1.24205385e+04 1.26371918e-04]

/Users/benzekry/anaconda3/lib/python3.6/site-packages/matplotlib/scale.py:111: RuntimeWarning: invalid value encountered in less_equal
out[a <= 0] = -1000

35

36

37

38

39

40

41

42

43

44

The improvement of this model as compared to the logistic model is notable. However, the cost
for this has been to add a parameter to the model. How do we know that we are not overfitting
now? In other words, isn’t it too easy to fit the growth curves with three parameters. This is
linked to the question of identifiability of the parameters. The theory of maximimum likelihood
estimation (MLE) offers great tools for such a purpose. Specifically, from its definition the MLE
estimator is a random variable. As such, it has a distribution coming from the fact that the data
itself is uncertain. For a single parameter, the standard deviation of this distribution is called the
standard error. An important property of the MLE estimator θ̂ is that it is asymptotically normally
distributed and its asymptotic covariance matrix C can be estimated from the combination of : 1)
the (estimated) variance of the measurement error σ̂2 and 2) the jacobian matrix of the model
evaluated in θ̂. Specifically, denoting J the (weighted) jacobian matrix of the model, one can show
that asymptotically

θ̂ ∼ N
(

θ∗, σ̂2
(

J · JT
)−1

)
where θ∗ is the true value assumed to have generated the data (which we are estimating with θ̂).
I invite you to think two minutes about why the presence of σ̂ as a proportional term and J as
an inversely proportional term make sense. From C the standard error (se) and relative standard
error (rse) on parameter p are defined by

se
(
θ̂p) = √Cp,p rse

(
θ̂p) = se

(
θ̂p)

θ̂p
× 100

Luckily, this covariance matrix is automatically calculated by curve_fit and given as a second
output. Define a new function fit_all_mice_analysis which does not plot the fits but instead

45

gives as output a dictionary with two entries: two 10× p array: popts for all the estimated param-
eters in the 10 mice and rel_standard_errors of standard errors.

In [69]: def fit_all_mice_analysis(model_f, param0):
popts = np.zeros([10, len(param0)])
rel_standard_errors = np.zeros([10, len(param0)])
SSEs = np.zeros(10)
AICs = np.zeros(10)
BICs = np.zeros(10)
results = dict()
for mouse in range(1, 11):

time_loc = time[~np.isnan(df[mouse])]
data_loc = df[mouse][~np.isnan(df[mouse])]
popt, pcov = curve_fit(model_f, time_loc, data_loc, param0, sigma=0.1*data_loc, maxfev=10000)
popts[mouse-1, :] = popt
rel_standard_errors[mouse-1, :] = np.sqrt(np.diag(pcov))/popt*100
V = model_f(time_loc, *popt)
SSE = np.sum(((V-data_loc)/V)**2)
SSEs[mouse-1] = SSE
n = len(data_loc)
p = len(param0)
AICs[mouse-1] = n*np.log(SSE/n) + 2*p
BICs[mouse-1] = n*np.log(SSE/n) + p*np.log(n)

results['popts'] = popts
results['rel_standard_errors'] = rel_standard_errors
results['SSEs'] = SSEs
results['AICs'] = AICs
results['BICs'] = BICs
return results

Apply it to the exponential, logistic and generalized_logistic model. What do you think
of the identifiability of these models?

In [37]: float_formatter = lambda x: "%.3g" % x
np.set_printoptions(formatter={'float_kind':float_formatter})
results = fit_all_mice_analysis(exponential, [alpha])
print(results['rel_standard_errors'])
results = fit_all_mice_analysis(logistic, [alpha, K])
print(results['rel_standard_errors'])
results = fit_all_mice_analysis(generalized_logistic, [alpha, K, 0.1])
print(results['rel_standard_errors'])

[[3.43]
[3.89]
[3.67]
[2.85]
[3.48]
[3.63]
[3.94]

46

[2.73]
[2.75]
[2.99]]

[[2.59 13.2]
[4.2 18.4]
[4.66 30.7]
[3.83 22.9]
[4.64 23.8]
[3.15 18.7]
[6.78 18.1]
[2.67 16.9]
[3.08 20.3]
[2.66 15.1]]

/Users/benzekry/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:2: RuntimeWarning: invalid value encountered in double_scalars

/Users/benzekry/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:2: RuntimeWarning: overflow encountered in exp

/Users/benzekry/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:2: RuntimeWarning: divide by zero encountered in true_divide

/Users/benzekry/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:2: RuntimeWarning: invalid value encountered in power

[[34.9 35.1 61.6]
[6.75e+04 31.1 6.75e+04]
[2.3e+05 192 2.3e+05]
[1.81e+05 234 1.81e+05]
[1.67e+05 128 1.67e+05]
[7.25e+03 158 7.33e+03]
[2.42e+05 162 2.42e+05]
[1.42e+05 252 1.42e+05]
[6.36e+04 397 6.37e+04]
[3.98e+04 52.8 3.99e+04]]

3 2.4 The "magical" Gompertz model

Looking at the values of the parameter γ in the generalized logistic model, we see that its value
was identified to be very small. When γ tends to zero, the expression obtained is equal to the
very popular Gompertz model, which can be expressed by the following differential equation and
analytical expression:{

dV
dt =

(
α0 − β ln

(
V
Vc

))
V

V(t = 0) = 1
⇒ V(t) = Vc

(
VI

Vc

)e−βt

e
α0
β (1−e−βt)

where Vc is the volume of one cell (a constant equal to 10−6), α0 is the proliferation rate at one cell
and β is the rate of exponential decrease of the relative growth rate. Indeed, one can show that the

47

equation above is equivalent to { dV
dt = α1e−βtV

V(t = 0) = 1

with α1 = α0 + β ln(Vc).
This model is implemented in the following function

In [44]: def gompertz(time, alpha0, beta):
Vc = 1e-6
VI = 1
V = Vc*(VI/Vc)**(np.exp(-beta*time))*np.exp(alpha0/beta*(1-np.exp(-beta*time)))
return V

Fit this model to the data and assess (visually) the goodness of fit. Take α0 = 0.1 and β = 0.01
as initial conditions.

In [46]: fit_all_mice(gompertz, [0.1, 0.01])

[1.96 0.0859]
[2.49 0.114]
[2.1 0.0928]

/Users/benzekry/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:4: RuntimeWarning: overflow encountered in exp
after removing the cwd from sys.path.

/Users/benzekry/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:4: RuntimeWarning: overflow encountered in multiply
after removing the cwd from sys.path.

/Users/benzekry/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:4: RuntimeWarning: overflow encountered in power
after removing the cwd from sys.path.

[1.45 0.0619]
[2.08 0.0933]
[1.95 0.0846]
[3.07 0.143]
[1.66 0.0703]
[1.44 0.0603]
[1.58 0.0682]

/Users/benzekry/anaconda3/lib/python3.6/site-packages/matplotlib/scale.py:111: RuntimeWarning: invalid value encountered in less_equal
out[a <= 0] = -1000

48

49

50

51

52

53

54

55

56

57

58

Assess then the standard errors

In [47]: results = fit_all_mice_analysis(gompertz, [0.1, 0.01])
print(results['rel_standard_errors'])

[[4.15 5.08]
[4.49 5.19]
[14.5 17.8]
[10 12.9]
[9.25 11.1]
[6.05 7.55]
[8.13 9.43]
[6.58 8.43]
[8.45 11.2]
[2.9 3.66]]

/Users/benzekry/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:4: RuntimeWarning: overflow encountered in exp
after removing the cwd from sys.path.

/Users/benzekry/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:4: RuntimeWarning: overflow encountered in multiply
after removing the cwd from sys.path.

/Users/benzekry/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:4: RuntimeWarning: overflow encountered in power
after removing the cwd from sys.path.

3.1 2.5 The power law model as a simple and biologically interpretable model

Although widely employed due to its excellent descriptive power, one of the main criticism ad-
dressed to the Gompertz model is its lack of biological ground. Indeed, while the parameter α0
can be interpreted from the duration of the cell cycle, the parameter β remains heuristic. It is not a
physiological parameter that could be experimentally measured and can only be assessed through
fitting the growth curve.

The power law model is yet another model which consists in assuming that the proliferative
tissue – instead of being a constant fraction of the tumor volume as in the exponential model –
is rather proportional to the volume of the tumor elevated to a power γ. This power (or rather
the triple of it) can be interpreted as the fractal (Hausdorff) dimension of the proliferative tissue.
For example, when γ = 2

3 then the proliferative tissue would only be two-dimensional within a
three-dimensional tumor. This could correspond to a proliferative rim limited to the surface of
the tumor, and would make sense because the vascularization of a tumor often occurs through its
surface. However, an active process of tumor-driven vasculature development (the tumor neo-
angiogenesis) induces the growth of new infiltrative blood vessels. From the naturall tree struc-
ture of the blood network, a fractal dimension naturally occurs and the proliferative tissue, being
in the vicinity of the blood vessels, inherits this dimension. Summing up, this gives the following
simple differential equation which can, once again, be solved analytically:{ dV

dt = αVγ

V(t = 0) = 1
=⇒ V(t) = (1 + α(1− γ)t)

1
1−γ .

In the case of γ = 2
3 , show that growth of the tumor radius is linear in time. This patterns is

experimentally and clinically observed in many situations, including the growth of gliomas.

59

Use the following function to fit the model (initial guess α = 0.2, γ = 0.7) to the data and
assess the identifiability of its parameters. What value do you estimate for the fractal dimension
of the vasculature in this data set?

In [57]: def power_law(time, alpha, gamma):
VI = 1
V = (VI**(1-gamma)+alpha*(1-gamma)*time)**(1./(1-gamma))
return V

In [56]: fit_all_mice(power_law, [0.2, 0.7])

/Users/benzekry/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:3: RuntimeWarning: invalid value encountered in power
This is separate from the ipykernel package so we can avoid doing imports until

[0.992 0.768]
[1.48 0.679]
[1.36 0.704]
[0.776 0.782]
[1.18 0.718]
[0.975 0.782]
[1.71 0.67]
[0.887 0.79]
[0.7 0.828]
[0.805 0.788]

/Users/benzekry/anaconda3/lib/python3.6/site-packages/matplotlib/scale.py:111: RuntimeWarning: invalid value encountered in less_equal
out[a <= 0] = -1000

60

61

62

63

64

65

66

67

68

69

70

In [59]: results = fit_all_mice_analysis(power_law, [0.2, 0.7])
print(results['rel_standard_errors'])
gamma_mean = np.mean(results['popts'][:, 1])
gamma_std = np.std(results['popts'][:, 1])
print('Mean gamma = %.3g' %gamma_mean)
print('Std gamma = %.3g' %gamma_std)

[[8.15 2.57]
[6.07 2.09]
[19 6.52]
[10.4 3.43]
[11.1 3.78]
[7.74 2.5]
[10.1 3.8]
[7.48 2.33]
[7.86 2.52]
[2.78 0.888]]

Mean gamma = 0.751
Std gamma = 0.051

/Users/benzekry/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:3: RuntimeWarning: invalid value encountered in power
This is separate from the ipykernel package so we can avoid doing imports until

3.2 Goodness-of-fit metrics

So far, we have only analyzed goodness-of-fit visually. While this is an important step in any
fitting exercise, there exists quantitative metrics allowing to score the descriptive power and rank
models. The first one would be the optimal likelihood obtained from the fit. In our simplified
case, it reduces to the sum of the squared errors between the model and the data:

SSE =
n

∑
j=1

(
Vj −V(tj, θ)

Vj

)2

.

However, this metric does not account for the number of parameters in the model, which makes
it easier to fit. To do so, two metrics that penalize the number of parameters exist: the Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC). They are defined by:

AIC = n ln
(

SSE
n

)
+ 2p, BIC = n ln

(
SSE

n

)
+ p ln(n).

Modify the function fits_all_mice_analysis to compute these quantities (for each mouse) and
output them in arrays SSEs, AICs and BICs in the results dictionary.

Then use this function to construct a dataframe with models as index and mean scores as
columns.

In [79]: model_fs = [exponential, exponential_V0, logistic, generalized_logistic, gompertz, power_law]
param0s = [[0.1], [0.1, 10], [0.5, 5000], [0.5, 5000, 0.1], [0.1, 0.01], [0.2, 0.7]]

71

model_names = ['exponential', 'exponential_V0', 'logistic', 'generalized_logistic', 'gompertz', 'power_law']
df_models_scores = pd.DataFrame(index=model_names, columns=['mSSE', 'mAIC', 'mBIC'])
for (model_f, param0, model_name) in zip(model_fs, param0s, model_names):

results = fit_all_mice_analysis(model_f, param0)
df_models_scores.loc[model_name, 'mSSE'] = np.mean(results['SSEs'])
df_models_scores.loc[model_name, 'mAIC'] = np.mean(results['AICs'])
df_models_scores.loc[model_name, 'mBIC'] = np.mean(results['BICs'])

df_models_scores = df_models_scores.applymap(lambda x: '%.3g' %x)
df_models_scores

/Users/benzekry/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:2: RuntimeWarning: invalid value encountered in double_scalars

/Users/benzekry/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:2: RuntimeWarning: overflow encountered in exp

/Users/benzekry/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:2: RuntimeWarning: divide by zero encountered in true_divide

/Users/benzekry/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:2: RuntimeWarning: invalid value encountered in power

/Users/benzekry/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:4: RuntimeWarning: overflow encountered in exp
after removing the cwd from sys.path.

/Users/benzekry/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:4: RuntimeWarning: overflow encountered in multiply
after removing the cwd from sys.path.

/Users/benzekry/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:4: RuntimeWarning: overflow encountered in power
after removing the cwd from sys.path.

/Users/benzekry/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:3: RuntimeWarning: invalid value encountered in power
This is separate from the ipykernel package so we can avoid doing imports until

Out[79]: mSSE mAIC mBIC
exponential 79 20.6 21
exponential_V0 0.73 -30 -29.2
logistic 10.5 -5.09 -4.33
generalized_logistic 1.4 -26.9 -25.7
gompertz 1.4 -28.6 -27.8
power_law 0.669 -33.7 -32.9

72

