This code is devoted to the simulation of a partial differential equation (PDE) based model for the time development of a population of secondary tumors (metastases) [1, 2].




[1] Iwata, K., Kawasaki, K., & Shigesada, N. (2000). A Dynamical Model for the Growth and Size Distribution of Multiple Metastatic Tumors. Journal of Theoretical Biology, 203(2), 177–186.

[2] Benzekry, S., Tracz, A., Mastri, M., Corbelli, R., Barbolosi, D., & Ebos, J. M. L. (2016). Modeling Spontaneous Metastasis following Surgery: An In Vivo-In Silico Approach. Cancer Research, 76(3), 535–547.

[3] Benzekry, S. (2011). Mathematical analysis of a two-dimensional population model of metastatic growth including angiogenesis. Journal of Evolution Equations, 11(1), 187–213.

[4] Benzekry, S. (2012). Passing to the limit 2D–1D in a model for metastatic growth. J Biol Dynam, 6(sup1), 19–30.

[5] Benzekry, S. (2012). Mathematical and numerical analysis of a model for anti-angiogenic therapy in metastatic cancers. ESAIM: Mathematical Modelling and Numerical Analysis, 46(2), 207–237.

[6] Benzekry, S., André, N., Benabdallah, A., Ciccolini, J., Faivre, C., Hubert, F., & Barbolosi, D. (2012). Modelling the impact of anticancer agents on metastatic spreading. Mathematical Modelling of Natural Phenomena, 7(1), 306–336.

[7] Benzekry, S., Gandolfi, A., & Hahnfeldt, P. (2014). Global Dormancy of Metastases Due to Systemic Inhibition of Angiogenesis. PLoS ONE, 9(1), e84249–11.

[8] Benzekry, S., Gandolfi, A., & Hahnfeldt, P. (2014). A mathematical model of systemic inhibition of angiogenesis in metastatic development. ESAIM: Proceedings and Surveys, 45, 75–87.